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Abstract—Age-specific population growth rates were introduced to demo-

graphic analysis in earlier work by Bennett and Horiuchi (1981) and
Preston and Coale (1982). In this paper, we derive a method which uses
these growth rates to transform what may be a set of incompletely
recorded deaths by age into a life table that accurately reflects the true
mortality experience of the population under study. The method does not
rely on the assumption of stability and, for example, in contrast to
intercensal cohort survival techniques, is simple to implement when
presented with nontraditional intercensal interval lengths. Thus we can
obtain mortality estimates for less developed countries with defective
data, despite departures from stability. Further, we assess the sensitivity
of the method to violations in various assumptions underlying the proce-
dure: error in estimated growth rates, existence of non-zero net intercensal
migration, age dependence in the completeness of death registration, and
misreporting of age at death and age in the population. We demonstrate the
use of the method in an application to data referring to Argentine females

during the period 1960 to 1970.

Throughout much of the time period
during which indirect estimation has
evolved, there have been many countries
whose populations have approximated
stability. Recently, however, more and
more countries have been experiencing
rapidly declining mortality and/or declin-
ing or fluctuating fertility, and thus have
undergone a radical departure from sta-
bility. Consequently, previously suc-
cessful indirect methods, grounded in
stable population theory, are with great-
er frequency ill-suited to the task for
which they were devised.

Bennett and Horiuchi (1981) have in-
troduced the use of age-specific popula-
tion growth rates into the indirect esti-
mation of mortality in order to
circumvent the increasingly limited ap-
plicability of stable population tech-
niques. This new methodology has re-

cently been extended by Preston and
Coale (1982) to cover a wide range of
demographic estimation.

There are at least three major ap-
proaches to mortality estimation using
age-specific growth rates. First, the com-
pleteness of death registration may be
estimated from inconsistencies among
the age structure of population, the age
distribution of deaths, and the age-spe-
cific growth rates, as shown by Bennett
and Horiuchi (1981). Second, the age
distribution of deaths found in the ob-
served population can be converted into
the distribution of deaths in the life table.
Regardless of the extent of registration
completeness, one can obtain accurate
estimates of life expectancy at various
ages using this method as long as certain
assumptions approximately hold true.
We present the second approach in this
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paper.! Last, the age structure of a
closed population can be converted into
that of the corresponding stationary pop-
ulation subject to the same mortality
conditions. This approach has been elab-
orated by Preston and Bennett (1983).

In addition to these three approaches
which do not necessarily depend on the
use of model life tables, Preston (1983)
has developed a method for estimating
the birth rate and mortality level simulta-
neously for an intercensal period, by
combining the use of age-specific growth
rates with the logit model life table sys-
tem and a Brass-type estimate of child
mortality. This method can be conceived
of as a special version of the third ap-
proach, although distinguishing it from
the third is the fact that model life tables
were used.

Using the method described below,
one can construct life tables which are
corrected for any underenumeration of
the population or underregistration of
deaths. Prior knowledge of the level of
completeness of the recording of deaths
and population is not necessary. The
method is applicable to any closed popu-
lation and essentially derives from exten-
sions to stable population theory.

DERIVATION

Just over three decades ago, Paul Vin-
cent (1951) published his seminal article
describing what is known as the method
of extinct generations. By way of this
method, we can estimate the number of
persons age a, N(a), at time #-x, by
cumulating all deaths experienced by
that cohort of persons subsequent to that
time. Clearly, the cohort must be ‘‘ex-
tinct’” at the time the study is initiated,
otherwise N(a) will be underestimated.
Unless one is focusing on historical pop-
ulations, the method is not very useful in
practice. However, even for the analysis
of historical populations, the method is
often impractical since it requires a long
time series of death registration data.

If, on the other hand, we want to
estimate N(a) in the current population

DEMOGRAPHY, volume 21, number 2, May 1984

and we know the population is stationary
and subject to unchanging mortality,
then we can apply the method of extinct
generations cross-sectionally to the cur-
rent age distribution of deaths. The
method can be applied in this case be-
cause stationarity guarantees that the
age distribution of any cohort is identical
to the current cross-sectional popula-
tion. Moreover, this cross—sectional ana-
logue can be extended to stable popula-
tions by noting that in a stable
population, the following relationship
holds:

N(a) = f D*(x)explr(x — a)ldx, (1)

a

where D*(x) is the true number of deaths
experienced by those aged x in the cur-
rent population (Preston et al., 1980).
This formula exploits the fact that, in a
stable population, the number of deaths
to persons age a in a given year differs
from that number in the previous year by
a factor of exp[r]. Note that when r
equals zero, equation (1) reduces to sim-
ply the summation of deaths occurring to
those above age a which yields the num-
ber of persons currently aged a.
Equation (1) can be generalized such
that it can be applied to any closed
population, without requiring the restric-
tive assumption of stability (Bennett and
Horiuchi, 1981). Thus we have

N(a) = I D*(x)exp[f r(u)du}dx,

where r(u) is the rate of growth of the
population aged u«. Suppose though that
registered deaths, D(x), underestimate
the true number of deaths, D*(x), by a
proportion constant across age such that
D(x) equals kD*(x), for all x = a. N(a)
may be defined as

N(a) = f D(e)(x)epr: f r(u)du]dx,(Z)

a a

where N(a) will equal kN(a).
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Bennett and Horiuchi (1981) have also

shown that
explij r(u)du] ,

_ N + X)
N(a)
where ,p, is the probability of survival
from age a to age a + x. Given the
assumption that completeness of death
registration does not vary with age, we

then have
exp[f r(u)du]. 3)

B N(a + x)
N(a)
The other life table functions can be
straight forwardly derived from the se-
ries of ,p,’s. Thus, given the number of
registered deaths by age and a set of age-
specific growth rates, a life table can be
constructed for the population under
study.?

xPa

xPa

IMPLEMENTATION

Demographic data are most widely
available by five-year age groups, up to
the open-ended, highest age interval.
Thus the equations in the previous sec-
tion need to be modified in order to apply
this method to the data, and form of
which, that are usually available.

From equation (2) it is straightforward
to derive

N(a) = N(a + S)explSsral
+ sDaexpl2.5sr,  (4)

where sr, represents the rate of growth
of the population aged a to @ + 5, and
sD,, the number of deaths to persons
aged a to a + 5. At one point in the
derivation of equation (4) we arrive at
the following equality:

5
J D(a + 2)explzsraldz = sDqexplZstal.
0

We assume 7 to equal 2.5, though in an
age group where the age distribution of
deaths is declining rapidly, this is a poor
assumption and will contribute to a bi-
ased estimate of N(a) in the oldest ages.

219

It becomes necessary, then, to develop a
correction factor which will compensate
for the error due to this assumption.
Equation (4) is thus adjusted to be:

N(a) = N(a + 5)exp[Ssral
+5Ya © sDa€Xp[2.5sr,].  (5)

By simulating populations with a wide
range of sr, and sM, (the observed death
rate in the population aged x to x + 5),
we have generated a regression equation
which provides an estimate of 5y,. Below
age 60, any adjustment is likely to be
inconsequential due to the relative sub-
tlety of the curvature in these ages and
the small influence of sD.exp[2.5sr,] as
compared with N(a + 5)expl5sr,] in the
determination of N(a). For x = 60, the
following estimation formula is recom-
mended:

5Yx = 1.00 — 2.265'} : 5Mx
+ 0.2185r, — 0.8265r,>.

In order to begin the estimation proc-
ess implied by equation (5), we must first
find N(A), where A is the lower bound of
the open interval in the age distribution.
The following equation has been found?
to closely approximate the relationship
among D*(A+), the true number of
deaths to persons age A and above, e(A),
the expectation of life at age A, r(A+),
the rate of growth of the number of
persons age A and above, and N(A):

N(A) = D*(A+)(explr(A+)e(A)]
— {lrAH)e)P/6h).  (6)

After obtaining N(A) (by substituting
D(A+), the registered number of deaths
to those aged A and above, for D*(A+)
in equation (6)), we can determine all
other N(x)’s (x = 0,5,...,A—5) using
equation (5).

We can see in equation (6) that we
need an estimate of e(A) as input. This is
a difficult problem, at best, because the
estimate cannot be derived as a function
of the inverse of the death rate above age
A since that death rate may be biased
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due to the incomplete recording of
deaths and the likely nonstationarity of
the population above age A (see, e.g.,
Horiuchi and Coale, 1982). Furthermore,
the power of the technique would be
enhanced if we could obtain the estimate
of e(A) directly from the age distribution
of deaths, without having to rely on the
census age distribution as well. Along
these lines, then, we suggest the follow-
ing procedure, which takes advantage of
a relationship observed in model life
table systems between the age distribu-
tion of deaths and the expectation of life
at a given age.

Within each family (West, North,
East, or South) of the Coale-Demeny
model life tables, for example, there ex-
ists a one-to-one relationship between
the ratio of adolescent and younger adult
deaths (ages 10 to 40), 3odyo, to older
adult deaths (ages 40 to 60), ,0d40, and
the life expectancy at any age x, for x =
60, .,95 (Coale and Demeny, 1983).
Because of this correspondence, it is
useful to convert the age distribution of
registered deaths into the life table death
distribution. This can be accomplished
by noting that

da) = ——1——— D(a)exp[far(x)a’x], @)
B 0

where d(a) is the number of life table
deaths at age a, k is the completeness of
death registration, and B is the annual
number of births in the population. The
discrete analogue to equation (7) is

a—5
5Daexp|:5 > osre + 2. 55ra]

x=0

1
Sdazk

When we sum the values of sd, to form
the ratio 30d10/20d40, it is not necessary to
know k and B since they appear in both
the numerator and denominator and thus
cancel one another.

Once we compute that ratio, we refer
to the appropriate family of model life
tables for the corresponding e(x) value,
which may be obtained by interpolation.
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Within the Coale-Demeny system, we
suggest that model West be chosen in the
absence of any information which would
point toward the use of another family
among the West, East, and South life
tables. The relationships found in these
three families of life tables are nearly
identical to one another, but differ from
the relationship incorporated within the
North model life tables. It should be
emphasized, however, that if one is lim-
iting the estimation of e(x) to ages above
75 or so, then the impact of an incorrect
choice of e(x) (for example, due to an
inappropriate choice of family) will be
minimal in the estimation of life expec-
tancy at the very young ages. For users
of the present method, we provide in
Table 1 the ratios of 3¢d;¢/20dso and the
corresponding values of e(75) through
e(95) which are associated with the
Coale-Demeny West model life tables
(Second edition) for males and females at
many different levels of mortality. Level
3 corresponds to e(0)’s of 22.852 and
25.000 years for males and females, re-
spectively, and level 25, to e(0)’s of
76.647 and 80.000.*

Using equations (5) and (6) we can
generate all values of N(x), for x =
0,5,...,A—5, and A. After computing
these values, it is a simple matter to
derive five-year survival probabilities,
by using
N(a + 5)

N(a)
which is the five-year discrete version of
equation (3). The other life table func-
tions are derived from the sequence of
sp.’s under certain assumptions about

the distribution of [,’s within five-year
age groups.’

Pa = explSsral,

SENSITIVITY ANALYSIS

In developing countries and, indeed,
in many developed countries, death reg-
istration and census data are subject to
several types of errors. These errors
violate various assumptions underlying
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our procedure. We will formally consid-
er four common errors found in the data
and discuss how these errors influence
the estimated values of e(x).

1. Error in Estimated Growth Rates

If age-specific growth rates computed
from two successive censuses are used,
then the resulting mortality estimates
might be biased due to differential com-
pleteness of coverage between the two
censuses. If the proportional differences
in coverage completeness are invariant
to age, then all age-specific growth rates
are biased by the same amount,

In(cy/cy)
r= —

b

where ¢; and ¢, are the completeness of
the first and second censuses, respec-
tively, and ¢ is the length of the intercen-
sal interval. It should be noted that the
amount of bias introduced to the age-
specific rates under these circumstances
is the same for all ages, even if the
completeness of census enumeration
varies with age. Bias in growth rates is
age-dependent only when the coverage
of persons in one age group has im-
proved or worsened relative to that in
another.

Differentiating equation (1) with re-
spect to r, we have

de(x)

= e(x)[243 — e(x)],

where A$ is the mean age of persons
above age x, measured with x as the
origin, in the stationary population that
corresponds to the life table produced by
the true mortality conditions. By rear-
ranging terms, we see that for Ar close to
zero,

Ae(x)

e(x)

= Ar[2A; — e(x)]. ®)

The proportionate error in expectation of
life at age x, then, is proportional to the
error in the rates of growth. The factor
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by which the error in e(x) is proportional
to Ar is presented in Table 2 for three
different mortality regimes.

In Table 2, we also present the propor-
tionate error in e(x) due to errors in
growth rates derived by Preston and
Bennett (1983) for their census-based
method of mortality estimation. Their
method is analogous to the present one
in that they use age-specific growth rates

dlog é, .
Table 2.————— Using Coale-Demeny West
r

Model Life Tables for Females.

Present Preston-
Age x Method Bennett
Level 9
(e0=40 years)
0 23.28 31.64
5 9.90 29.85
10 9.21 27.84
20 8.66 23.89
30 7.50 20.02
40 6.30 16.19
50 5.55 12.48
Level 15
(e0=55 years)
0 14.98 34.99
5 7.00 32.88
10 6.69 30.68
20 6.51 26.34
30 5.89 22.07
40 5.34 17.89
50 5.02 13.86
Level 21
(eo=70 years)
0 5.96 37.98
5 3.48 35.64
10 3.54 33.28
20 3.75 28.59
30 3.84 23.98
40 4.02 19.48
50 4.20 15.16
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to convert the observed age structure of
the population to that of the stationary
population corresponding to the life table
representing the mortality conditions of
the population under study. In the pres-
ent method, we convert the observed age
structure of deaths to that of the station-
ary population. Note that the Preston-
Bennett method is based on the follow-
ing relationship:

j N(a)exp[ f ar(u)du]da

N(x)

e(x) =

The proportionate error in e(x) due to an
error in the growth rate is given by

Ae,

€x

= Ar - A}

for small Ar. The multiplier A} is pre-
sented in Table 2.

The multiplier values in Table 2 reveal
that the present method is significantly
less sensitive to error in the growth rate
than is the method by Preston and Ben-
nett. At the extreme, the estimate of e(5)
under low mortality conditions is more
than ten times as sensitive to an error in
the growth rate using the census-based,
rather than the death registration-based,
method. )

It is also clear from Table 2 that pro-
portionate errors tend to be larger under
higher mortality conditions. For female
life expectancies of 40 and 55 years, the
proportionate error in e(x) is inversely
related with age between the ages of five
and 50. However, the reverse is true in
low mortality populations (e(0) = 70).

One last item worth noting is that the
proportionate error in e(0) is substantial-
ly larger than that in e(x) for ages five
through 50. This is one reason among
several that it is better to restrict use of
the present method to ages five and
above, leaving mortality under that age
to be estimated using a different proce-
dure.
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2. Net Intercensal International
Migration

Preston and Coale (1982) have shown
how equation (1) can be generalized to
accommodate the concept of an open
population. However, the data neces-
sary to implement this generalization,
age-specific net migration rates, are rare-
ly available. Thus, in the absence of
information regarding these rates, we are
forced to assume that the population is
closed, or more accurately, that at each
age in- and out-migration exactly offset
each other. Violation of this assumption
introduces biases in the estimated level
of mortality. Since various age patterns
of migration can be considered, we focus
on two extreme types of migration.

(a) Age-specific rates of net migration
are equal. Suppose each age group re-
ceives a net inflow of migrants during the
intercensal period in proportion to its
average size over the period. We denote
this age-independent net migration rate,
M. The life table death function for the
observed population is then given by

54 [ j a }
d(a) = exp| —| plx)dx |,
0

B -k

where p(x) = r(x) — M. However, if net
migration is neglected and one simply
uses equation (7), actually appropriate
only for closed populations, then the
situation is formally analogous to the
preceding one in which all growth rates
are distorted by the same amount of
error, due to improved census coverage.
We see, then, that the proportionate
error in life expectancy at age x will be

Ae(x)
e(x)

With an annual rate of net inmigration of
1 per 1,000, life expectancy estimates
will be too high by less than 1 percent at
ages between five and 50, as implied by
Table 2.

(b) Net inmigration occurs at only one
age, z. If we estimate life expectancy for

= M[2A,° — e(x)].
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an age x younger than the age of migra-
tion z, then for small M, where M, is the
annual rate of net inmigration at age z,
the effect of migration on estimated life
expectancy is

AE(X) = Mz tz—xPx ° zfx(bx,

where ,_ ¢, = [e(z) + z] — [e(x) + x]. As
x recedes from z, ,_.¢, increases more
rapidly than ,_.p, declines, so that the
error increases. Table 3 presents the
values of ,_.p, and ,_.¢, at various
mortality levels for z = 25, an age which
is close to the age of heaviest migration
in a number of populations (see, €.g.,
Rogers and Castro, 1981). The table
shows that the amount of error increases
substantially when we proceed from age
five to age zero, suggesting again that the
use of the present method should be

Table 3.—Values of .5 .p, X 25_.¢, in Coale-
Demeny West Model Life Tables for Females.

e x 25-xPx  25-x%x  (1)x(2)
ge X 1 2) (3)
Level 9
(e0=40 years)
0 .629 20.81 13.08
5 .867 6.01 5.21
10 .898 4.34 3.89
15 .922 3.14 2.90
20 .956 1.69 1.61
Level 15
(e0=55 years)
0 .803 12.19 9.79
5 .933 3.43 3.20
10 . 948 2.52 2.39
15 .960 1.87 1.79
20 .977 1.02 1.00
Level 21
(e0=70 years)
0 . 945 3.76 3.55
5 .983 0.96 0.95
10 .987 0.74 0.73
15 .989 0.57 0.56
20 .994 0.32 0.32
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limited to ages five and above. If x is
above z, then estimates of life expectan-
cy at age x are unaffected by migration at
age z.

3. Age-Dependent Completeness of
Death Registration

Completeness of death registration
may vary with age. Deaths in early child-
hood tend to be underregistered to a
greater extent than those at older ages.
The likelihood that a death will go unreg-
istered is especially great in infancy
when the death occurs prior to the regis-
tration of the birth. For this reason,
estimates of e(x) for ages five and above
will be more reliable than that of ¢(0).
Among adults, deaths of older persons,
especially widows and widowers living
alone, are more likely to be missed.

Suppose a decline in the completeness
of death registration begins at age z, and
the age pattern of completeness follows
an exponential trajectory, such that

k(x) = k(z) expl—g(x—2)] ,

where k(x) is the completeness of death
registration at age x, and g is the parame-
ter of the exponential function. This de-
cline of completeness with age has the
same impact on one’s estimates as does a
reduction of the age-specific growth
rates above age z by the constant amount
g. Thus for age x = z, the proportionate
error in life expectancy at age x will be:

Ae(x)
e(x)

Suppose, for example, completeness de-
clines from age 10 such that complete-
ness at age 60 is 80 percent that at age 10.
In this instance, g is equal to .0045 and
from Table 2 we see that the proportion-
ate error in e(x) (for x = 10) is about 2 to
3 percent given a true e(0) of 55 years.

= —g[2A; — e(x)].

4. Misreporting of Age at Death and
Age in the Population

Age-misreporting affects the mortality
estimates produced by the present meth-
od in two ways. Misstatement of age at
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death distorts the age distribution of
deaths (the D(a)’s), and inaccurate re-
porting of ages of the enumerated popu-
lation may introduce errors in the series
of age—specific growth rates (the r(a)’s).
In general, although random errors in
reported ages tend to cancel one anoth-
er, systematic over— or understatement
of ages will result in biased estimates of
mortality. For example, if the ages of all
living persons and decedents are over-
stated by y years, then the entire life
table for the population is shifted y
years. Life expectancy is too high by:

Ae(x) = e(x—y) — e(x) .

It should be noted that distortions in
the D(a)’s and r(a)’s due to age misre-
porting differ in their impact on mortality
estimates. We first consider errors in
age—-specific growth rates stemming from
age misstatement. If the rates are ob-
tained from two successive censuses, the
misreporting of ages of enumerated per-
sons will generally introduce errors in
these rates. Using the inaccurate age-
specific growth rates, the age structure
of deaths in the study population is in-
correctly converted into that of the life
table that is considered to represent the
mortality conditions prevailing in the
population. If growth rates are constant
across age, as in a stable population, age
misreporting will not result in defective
rates of growth. This proposition holds
as long as (a) age misreporting is inde-
pendent of the three components of
growth, i.e., mortality, fertility, and mi-
gration, and (b) patterns of age misre-
porting remain unchanged between the
two censuses.®

If growth rates vary with age, then age
misreporting leads to inaccurate esti-
mates of these rates. The reason for the
resulting bias in growth rates rests on the
fact that if the group of persons reported-
ly age a consists of persons of different
ages (including age a itself), then the
observed growth rate at age a is approxi-
mately equal to the weighted average of
true growth rates at the constituent ages.
The weight given to the growth rate at
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each age x is equivalent to the proportion
of those reportedly age a who are actual-
ly age x.

Suppose, for example, that growth
rates for age groups 65-69 and 70-74 are
.025 and .030, respectively, and, further,
that among those reportedly age 70-74,
only 80 percent are truly that age and 20
percent are in fact age 65-69. The ob-
served growth rate, then, for age group
70-74 is the weighted average of .030 and
.025, which in this case is about .029. If
all age-specific growth rates are underes-
timated by .001, as in this example, then
life expectancy at age x (for x = 5) is
underestimated by no more than one
percent.

Empirically, we find that age misre-
porting tends to result in the underesti-
mation of age-specific growth rates, as
was the case in the above example. In
most populations there is more over-
statement of age than understatement,
particularly among old age groups. Con-
sequently, the growth rate at a given age
tends to be confounded with age-specific
growth rates at younger ages. It can be
shown that reductions in fertility and
mortality tend to result in growth rates at
the younger ages that are low in compari-
son with those at the higher ages. In the
presence of net age overstatement, then,
estimated age-specific rates of growth
are lower than the true values.

In general, the size of the errors in
estimated life expectancy due to age
misstatement will most likely not be too
large. The transfer of persons by age
misstatement predominantly occurs be-
tween neighboring age groups, and not
between the very young and very old
groups. Furthermore, insofar as changes
in past vital rates have been gradual,
differences in growth rates among age
groups tends to be smaller if the groups
lie relatively close together. Thus, even
though age misstatement may exist, the
implicit weighting process ensures that
the estimated growth rates will not differ
too much from the true, underlying val-
ues (albeit under these ‘‘well-behaved”
conditions).
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Now we turn to the effect of misre-
porting of age at death on estimated
mortality. It can be shown that if (g X
100) percent of deaths at age z are report-
ed to occur at age y, where y > z, then
the expectation of life at age x (x <z <y)
is too high by

o — Az, y)
R I Y¢S0
-2
. - + — €x (>
{(y ? ¥z, y) e}

where N (z,y) = g ;—xpx - M2) " ¥
(2,¥), ;—xDx is the proportion of those
living at age x who survive to age z, w(z)
is the age-specific death rate at exact age
Z, and

y
Y (z,y) = exp [J r(u)du] - 1.

Suppose, for example, that 10 percent
of the population aged 60-64 classify
themselves as 70-74, that age—specific
growth rates are constant at .025 for ages
between 60 and 75, and that the popula-
tion is subject to the Coale-Demeny
model West life table for females at level
13 (corresponding to e(0) = 50 years);
the error in estimated life expectancy at
age 10 in such a case is a mere 0.114
year. If 10 percent of all ages at death
above age 60 are reported ten years too
old, then the error increases to 1.04
years. Although the effect is still rather
small, it is significantly larger than the
corresponding error in life expectancy
estimated from the population age struc-
ture using the census-based method by
Preston and Bennett. If 10 percent of the
population above age 60 reported them-
selves to be 10 years older than they
actually were, then the estimate of ¢(10)
would be 0.266 year too high.

Because deaths are more heavily con-
centrated at the older ages than is the
living population, age misreporting at
these ages will have more serious effects
on estimated mortality when the method
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of estimation is based on the age distri-
bution of deaths. Therefore, although the
present method is more robust than the
census-based method of Preston and
Bennett in the presence of migration and
differential census coverage, the census-
based method is less sensitive to age
misreporting.’

APPLICATION

In order to illustrate the use of this
method, we apply it to registration and
census data for Argentine females cover-
ing the period 1960 to 1970. Argentina is
believed to have better quality data than
most other Latin American countries,
although these data are still subject to a
considerable amount of error. Inconsis-
tencies in the data become evident when
we attempt to evaluate the completeness
of death registration in the population.

Registration and census data are avail-
able for five—year age groups up to age
85, plus the open-ended interval, 85 and
above. To be able to determine the com-
pleteness, we first need an estimate of
e(85). Rather than use the Coale-De-
meny model life tables to obtain this
estimate, we instead use the Latin Amer-
ican model developed by the United Na-
tions (1982b). Later, we will see whether
this model is in fact an appropriate
choice. Enumeration of 55-59, 60-64,
and 65-69 year olds appears to be inac-
curate in many Latin American countries
due to age misstatement. Thus, instead
of using 39d 0/20d40 to infer e(85), we use
30d10/15ds9, On the assumption that the
number of deaths in the age group 55-59
might be suspect. The ratio equals .636,
giving us an e(85) of 5.49 years.

Table 4 presents the raw data—the
two census age distributions (September
30, 1960 and 1970) and the intervening
ten-year sum of deaths®—and estimates
of the completeness of death registration
in the form of the two series of ratios,
sNx/sNy and gs_ N./gs—N,. sN, and
85—, refer to the estimated number of
persons aged x through x + 4 and x
through 84, respectively. sN, and gs_ N,
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Table 4.—Age Distribution of Argentine Female Population on September 30, 1960
and 1970, Age Distribution of Intercensal Female Deaths, and N/N Ratios Using 85
and Above for Open Interval.

Age

Inter-
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Group Population Population censal éﬁi 85-x x
(x, x+4) 9-30-60 9-30-70 Deaths 5% 85-x x
0 1,054,603 1,158,350 159,124 - -

5 1,029,209 1,133,950 7,259 1.071 1.037
10 965,393 1,086,850 5,558 1.067 1.033
15 854,136 1,039,850 9,183 1.068 1.028
20 778,130 980,550 10,729 1.030 1.023
25 775,842 860,150 11,864 1.007 1.022
30 789,746 795,650 14,542 1.001 1.024
35 724,175 767,400 18,379 1.036 1.029
40 611,018 769,600 21,664 1.034 1.027
45 590,405 698,950 27,173 .981 1.025
50 499,239 584,800 35,955 1.046 1.039
55 414,264 549,250 46,529 1.021 1.036
60 326,719 454,750 58,863 1.019 1.043
65 236,487 350,450 69,388 1.036 1.056
70 172,717 244,200 79,734 1.042 1.070
75 99,937 156,550 82,508 1.106 1.100
80 50,570 89,400 71,083 1.089 -
85 32,052 52,350 73,952 - ——

refer to the corresponding observed val-
ues given by the censuses. In Figure 1
we plot the two series so that we may
more easily discern errors in the data. If
the completeness of death registration
and census enumeration were invariant
to age, the age-specific growth rates
were correct, and no age misstatement
occurred, then the N/N ratios would
form a flat line, the level of which would
equal the proportion of deaths recorded
relative to the completeness of census
enumeration. The overall pattern in the
cumulated N/N ratios (gs—<N/gs—xNy)
reveals the existence of overstatement of
age at death. The sharp upswing in these
ratios toward the end of the age distribu-
tion indicates that too many deaths are
being placed in the oldest age groups,
thus spuriously giving the impression
that completeness of death registration
improves rapidly with age above age 60
or so. Theoretically, of course, this im-
provement could be a real phenomenon,

but such would be extremely implausi-
ble.

To circumvent the problem of over-
statement of age at death in the very old
ages, we collapse several age groups at
the end of the age distribution and form a
new open interval, one within which
presumably most of the age overstate-
ment occurs. In the present case, we
create the open interval, 75 and above,
and thereby assume that little systematic
overstatement of age occurs below age
75. The inferred value for e(75) is 9.68
years.

In Table 5 we present the two sets of
ratios, sN,/N, and 75— N.7s_.N, and
plot the series in Figure 2. The series of
cumulated N/N ratios has flattened out
considerably. The median of this series
forx = 35,10, . . ., 65is 1.032, indicating
that deaths are actually overregistered
by 3 to 4 percent relative to the com-
pleteness of census enumeration.

From the N(x)’s, we estimate the ex-
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Table 5.—N/N Ratios for Argentine Females Using
Age 75 and Above for Open Interval.

Age N N
Group éﬁi Zé:§ﬁ§
(x, x+4) 5% 75-x x
5 1.077 1.042
10 1.073 1.037
15 1.074 1.032
20 1.036 1.026
25 1.012 1.025
30 1.006 1.027
35 1.042 1.031
40 1.040 1.029
45 .986 1.026
50 1.052 1.039
55 1.027 1.034
60 1.026 1.037
65 1.043 1.046
70 1.050 -—

pectation of life at ages 5 through 75,
shown in Table 6. Because it is likely
that various assumptions implicit in the
procedure may not be strictly valid, for
example that registration completeness
is constant across age, we choose to fit a
model life table to our estimated e(x)
values. Using the Latin American tables
for females, we infer the model e(0) that
is associated with each estimated e(x).
The array of model e(0)’s is also present-
ed in Table 6. The striking result is that
our derived life table for Argentine fe-
males nearly perfectly follows the Latin
American model pattern of mortality.’
The e(0)’s implied by the estimated e(x)’s
for ages 5 through 65 vary only insignifi-
cantly, within a range of .3 year. We
should note that the dramatically close
fit justifies our earlier decision to use the
Latin American model to obtain the esti-
mate of e(A), the expectation of life at
the lower bound of the open interval.
Taking the median of the model e(0)’s
derived from the e(x)’s for ages 10
through 55 (the ages probably least sub-
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ject to error), we interpolate from the
United Nations model life tables the en-
tire life table associated with e(0) equal
to 69.36 years. We present life expectan-
cyatagexforx=20,1,5,10,...,85in
Table 7. Adopting these values of e(0)
and e(1) assumes, of course, that the
Latin American pattern derived from ob-
served e(x)’s for ages 5 and above holds
for ages below 5 as well. Ideally, we
would want further information regard-
ing infant and child mortality before we
make such a claim.

Our estimate of e(5), 69.4 years, is
slightly higher than that given by the
United Nations (1982a), approximately
69.3 years. This slight difference is easily
explained by our finding that the
straightforward use of registered deaths
and census data to form age-specific
death rates will lead to a small upward
bias in these rates. Our results indicate
that we must deflate the observed num-
ber of deaths to bring that number in line
with the actual extent of completeness of
census enumeration. The lower death
rates, then, result in slightly higher life
expectancies.

DISCUSSION

We have derived a method from a
generalization of stable population the-
ory that enables one to estimate an accu-
rate life table using incomplete death
registration data. It is not necessary,
however, to know a priori the level of
completeness.

Forward and backward projection
techniques have been most widely used
for the construction of a life table for an
intercensal period when deaths in the
period are likely to be significantly un-
derregistered or not reported at all (see,
e.g., Coale and Demeny, 1967, and Pal-
loni and Kominski, 1981). The major
advantages of the present method over
these standard intercensal survival tech-
niques are the following:

First, the present method is much sim-
pler to use, especially when one is ana-
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Table 6.—Expectations of Life Estimated Using
the Present Method and the Corresponding Implied
e(0)s from the Latin American Model Life Tables.

Estimated Implied
Age x e(x) Model e(0)
5 69.52 69.53
10 64.73 69.28
15 59.89 69.24
20 55.15 69.31
25 50.46 69.36
30 45.81 69.39
35 41.21 69.42
40 36.67 69.41
45 32.19 69.35
50 27.83 69.32
55 23.64 69.36
60 19.66 69.38
65 15.98 69.43
70 12.63 68.99
75 9.68 68.01

lyzing data referring to an intercensal
interval of nonstandard length (i.e., not
an integer multiple of five years). For
example, if one were studying mortality
during a four-year period between cen-
suses (e.g., as with the Korean censuses
of 1966 and 1970), one could by using the
present method avoid reclassification of
the data into unorthodox four-year age
intervals. Such reclassification would re-
quire either single-year age data or put-
ting forth some assumption about the
single-year age distribution within each
five-year age group.

Second, one need not rely on model
life tables in order to derive estimates of
e(x), except perhaps in the case of e(4),
where A is the lower bound of the open-
ended interval.

Third, the N(x) series, a by-product of
this method, is very useful for analyzing
the data for violations of the assumptions
underlying the method. Previous work
has shown how to diagnose and deal
effectively with possible overstatement
of age at death and differential complete-
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ness of enumeration between the two
censuses from age patterns of N(x)/N(x)
(Preston et al., 1980, Bennett and Horiu-
chi, 1981, and Hill et al., 1983).

There are, however, two drawbacks to
the use of this method. First, we cannot
safely obtain an estimate of the expecta-
tion of life at birth using this method
since it is likely that deaths under age
five are recorded to a lesser extent than
those above age five. If we were to
estimate ¢(0), then, the assumption of
constancy of completeness in death reg-
istration across age might-be an incorrect
one. Further, estimates of e(0) are con-
siderably more sensitive to violations in
the other assumptions underlying this
method than are estimates of e(x) at
higher ages. It is very common, howev-
er, that a country will have reasonably
good estimates of infant and child mor-
tality by virtue of Brass questions on

Table 7.—Final Estimates of Expectations of Life

for Argentine Females during the Period 1960 to

1970 Interpolated from Latin American Model Life
Tables (e(0) = 69.36 years).

Model

Age x e(x)
0 69.36
1 71.87
5 69.41
10 64.78
15 59.96
20 55.18
25 50.46
30 45.79
35 41.18
40 36.64
45 32.19
50 27.85
55 23.64
60 19.65
65 15.96
70 12.71
75 9.90
80 7.45
85 5.59
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numbers of children ever born and sur-
viving. It would thus be possible to
splice the life table under five from this
source with that above five obtained
using the present method.

Second, since deaths are concentrated
in the upper ages, it is important how we
obtain e(A). When A is above 75 or so,
the estimate of e(A) usually will not
affect significantly the estimate of e(5).
However, should we have age groups up
to only age 60 and over, and therefore
have to begin the procedure with an
estimate of e¢(60), then the choice of e(60)
must be made carefully. In fact, the
safest approach would be to estimate a
range of e(5) within which the true value
would most likely fall, by inputting the
limiting values of e(60) (within which the
true value of e(60) would most likely
fall).

Finally, a word may be needed about
the comparative usefulness of this meth-
od and the other previously mentioned
techniques of estimating mortality using
age-specific growth rates. The method
by Preston and Bennett (1983) for con-
structing a life table from intercensal
person-years lived, and another tech-
nique by Preston (1983) based on the
logit life table system, seem adequate
when data from two successive censuses
are available but registration of deaths
during the intercensal period is virtually
nonexistent. When deaths are registered
but their completeness is in doubt, we
recommend that the present method and
the procedure by Bennett and Horiuchi
(1981) for estimating the extent of under-
registration be integrated as two compo-
nents of one data-processing package.
Both procedures require the calculation
of N(x)’s, and once the sequence of
N(x)’s is obtained, then both the estima-
tion of the completeness of death regis-
tration and the construction of a life table
from the sequence are fairly simple mat-
ters, logically consistent with each other.

NOTES

! This method was originally developed and ap-
plied in Bennett (1981).
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2 An alternative way to construct life tables is
implied by equation (7), which converts the num-
ber of registered deaths by age into the age distri-
bution of deaths in the stationary population using
age-specific growth rates. A proportionality factor,
k - B, in equation (7) is obtained such that

J d(a)da=1.
0

The remainder of the life table can be derived from
the sequence of d(a)’s. Although the starting age of
the life table is set to zero in equation (7), this age
can be shifted easily to any higher one.

Given the same set of data, equations (7) and (3)
lead to exactly the same life table. They are essen-
tially alternative derivations of the same method.
Although equation (7) may represent the basic idea
of the method more clearly, the use of N(a)’s is in
practice preferable, since the N(a)’s are useful by-
products for diagnosing violations of basic assump-
tions of the method.

3 For the derivation of equation (6), see note (3)
of Bennett and Horiuchi (1981).

4 An alternative method of obtaining e(A) is
suggested by Preston and Bennett (1983). They
note that if the age-specific growth rates are con-
stant for all ages above A, then

j N(A + y)explyr(A+)ldy
e(4) = 22

N(A) '
which reduces to

NA+)
NA)

e(A) = explyr(A+)] -

where y is defined such that the equality holds. The
following equation is suggested to solve for y and is
based on regression analysis of simulated data:

v = e(A)[0.802 — 0.0106e(A) — 1.34r(A+)].

The solution for e(A) is then obtained implicitly
by numerical approximation. Thus e(A) may be
derived in this manner, given that the numbers of
persons above age A, N(A+), and at age A, N(A),
(the latter estimated by means shown in Preston
and Bennett [1983]) are available.

The major problems with this approach are: (a) it
requires an additional source of data, and (b) the
estimates of e(x) would be subject to errors in the
estimation of N(A+) and N(A). The former prob-
lem is virtually trivial. Although we may never use
the population age distribution explicitly in the
procedure described in the text, we will almost
always require two census age distributions in
order to obtain the age-specific rates of growth.
Furthermore, it should be noted that if one is
forced to estimate e(A) at an age as low as 60, for
example, and if in addition one is uncertain about
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the appropriateness of one family versus another in
the model life table system, then we might in fact
wish to use this alternative approach rather than a
method which would rely on the use of model life
tables.

5 To obtain e(x) values, we must first derive the
series of sL,’s, the person-years lived in each age
category. It is straightforward to compute the /,’s
from the five-year survival probabilities (beginning
with a radix of one). Through a equal to age 45, we
employ the formula sL, = 2.5(/, + [,.s). For ages
50 and above we assume that age-specific mortal-
ity rates are growing exponentially, and thus follow
a Gompertz mortality schedule. We then have

waPa = exp {{i(a)-A(0)V8, )

where &, which we set equal to .10, is the natural
log of one plus the proportion increase in mortality
with each year of age, and @(a) and f(x), the
estimated death rates at exact ages a and x, respec-
tively, are given by

In[N(a + 5)/N(a)] + Ssr,
{l — exp[5¢&}/¢

aa) =

and
ffx) = [ia)expl(x—a)é].

Equations (7) and (9) allow us to compute the
single-year /,’s which we can then sum to obtain
the sL,’s.

¢ Specifically, we assume that the proportion of
those age a who report to be age x, for all ages,
remains constant over the intercensal period.

7 We might also note that given an acceptable
(perhaps, model) life table we can correct an ob-
served distribution of deaths for age misreporting.
Inverting the approach suggested by equation (7),
we can convert the life table death distribution
using age-specific growth rates and thus generate
an expected age distribution of deaths for the actual
population.

8 The age distribution of deaths for 1967 has not
been published. We assume that distribution to be
equal to the average of the 1966 and 1968 distribu-
tions.

® We should note that no life tables from Argenti-
na were used as input in the creation of the U.N.
model life tables for developing countries.
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