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The age-specific rate of mortality change with age, defined by k(x) = dlnJ.L(x)/dx, where J.L(x) is the 
age-specific death rate at exact age x, is estimated for middle and old ages in ten selected populations 
that are considered to have relatively accurate age data. For females in each of the study populations, 
k(x) follows a bell-shaped curve that usually peaks around age 75. In some of the populations, the age 
pattern of k(x) for males is confounded with substantial cohort variations, which seem to reflect long­
term impacts of their World War I experiences. 

Among the mathematical models proposed by Gompertz, Makeham, Perks and Beard, only the Perks 
model is consistent with the bell-shaped pattern of k(x). It is shown that, if the risk of death for every 
individual follows the Makeham equation and if the individual frailty is gamma-distributed, then the 
age-specific death rate follows the Perks equation. 

KEY WORDS: Mortality, old-age mortality, aging, heterogeneity, Gompertz model, Perks model. 

INTRODUCTION 

In this paper we propose a mortality measure that seems useful in analyzing age 
patterns of death rates. The measure, which will be denoted by k(x), indicates the 
proportional increase or decrease with age in the risk of death at a given age x, 
and is called the age-specific rate of mortality change with age.! In old ages, the risk 
of death grows with age. Since the increment itself tends to be larger at older ages 
of higher mortality, it seems useful to measure the mortality increase relative to the 
risk of death and examine its variations. 

1This measure is concerned with age variations, not period variations. Age-specific rate of mortality 
change over time can be calculated in a similar way. 
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Little attention has been given, however, to the measurement of k(x) partly 
due to the common exercise in mortality research to calculate the logarithms of 
age-specific death rates and plot them against age. In theory, the plot is expected 
to indicate patterns of proportional mortality change with age: a rising (declining) 
rate of mortality increase results in an upwardly (downwardly) concave curve, and 
a constant proportional growth results in a straight line. Usually, plotted points 
are narrowly scattered around a straight line over a wide range of middle and 
old ages. However, as shown later in Figures 1 and 2, the logarithms of death 
rates plotted against age tend to appear to fall on a straight line, even when 
the value of k (x) changes substantially with age. Therefore, age variations in 
the proportional increment of death rate should be detected not by looking at 
graphs of the logarithms of death rates plotted against age but by calculating k (x) 
directly. 

This measure has at least four advantages in mortality research, which will be il­
lustrated in this paper. First, it is useful in assessing mathematical models of mortal­
ity. Several equations describing the mortality increase with age among middle-aged 
and old persons have been developed over the period of more than one and a half 
centuries, including those by Gompertz, Makeham, Perks and Beard. 

It is not a very simple task, however, to evaluate and compare the validity of 
those models. All of those models usually fit observed death rates and their log­
arithms well, making it difficult to determine which model fits the data best. Fur­
thermore, those models have different numbers of parameters. In general, models 
with more parameters tend to fit data better, introducing additional difficulties in 
comparative assessment of those models. Those mathematical models, however, can 
be straightforwardly evaluated using k(x), because age patterns of k(x) implied by 
those models are significantly different. 

Secondly, k(x) is expected to provide some clues about the heterogeneity of a 
population with respect to mortality. A population may be considered to consist 
of subgroups that follow different mortality schedules. The proportions of those 
subgroups in the population vary with age because the groups exposed to higher 
risk tend to be reduced faster. Therefore, the age pattern of k(x) for the entire 
population may be significantly different from those of its subgroups, giving some 
clues about the distribution in the population of the individual vulnerability to the 
risk of death. It will be shown later that the introduction of a heterogeneity model 
helps explain observed k(x) patterns. 

Thirdly, k(x) seems useful in studying physiological aging. The risk of death in­
creases as the human body degenerates, so that k(x) may reflect age variations in 
the "pace of aging." 

Finally, k(x) is useful in detecting cohort mortality variations. For example, if a 
low mortality cohort is followed by a high mortality cohort, mortality increases with 
age from the younger group to the older group at a relatively low rate, so that k(x) 
tends to be small. If the order is reversed, k(x) tends to be large. Therefore, if 
a cohort experiences a relatively higher mortality schedule than its adjacent ones, 
low values of k(x) at older ages tend to be followed by high values of k(x) at 
younger ages, and the high-mortality cohort is likely to be located between those 
unexpectedly high and low values of k(x). 
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In the following sections, we will investigate the k (x) function in selected popu­
lations, identify their similarities and differences, examine the validity of those find­
ings, analyze the observed k(x) patterns in relation to existing mathematical models, 
and discuss a hypothetical underlying mechanism that could generate the observed 
k (x) patterns. 

METHODS AND MATERIALS 

The force of mortality (or the instantaneous death rate) at exact age x is given by 

_ dln(l(x))
( ) (1)J1- x - dx ' 

where 1(x) is the life-table function representing the proportion surviving from birth 
to age x. The rate of mortality change at age x is then defined by 

k(x) = dln~(X)). (2) 

If data are available for single-year age groups, k (x) may be estimated by 

*k(X) = In(M(x, 1)) -In(M(x - 1,1)), (3) 

where M(x,a) is the central death rate from age x to x + a. Note that, in Eq. (3), 
mortality data from exact age x-I to x + 1 are used for estimating k (x). 

The empirical analysis of old-age mortality is complicated by two defects often 
found in recorded data. One defect is the small number of persons and deaths at 
very old ages, introducing an unavoidably large stochastic variation in death rates. 

* Values of k(x) estimated using Eq. (3), therefore, need to be smoothed to detect un­
derlying patterns of its systematic variations. We smooth the sequence of In(M(x, 1)) 
first by taking moving averages of five successive values, use Eq. (3) to compute 
* * k (x) from the graduated sequence of In(M (x, 1)), then smooth the sequence of k (x) 
by taking weighted averages of nine succes~ive values, the weight being distributed 
triangularly over nine values. Namely, k(x) is estimated by 

k(x) = L
4 

(5 ~inl) .k(x + n). (4) 
n=-4 

It should be noted that this method, like many other graduation procedures, tend to 
flatten resulting patterns to some extent, by lowering peaks and raising troughs. 

Although this method consists of two steps, i.e., smoothing of In(M(x,1)) and 
* that of k(x), the second step is more crucial than the first step. The two-step proce­

dure and smoothing using the second step only produce similar k(x) curves, though 
the inclusion of the preliminary (first-step) smoothing of In(M(x,1)) deletes small 
wiggles. 

Another widely-observed defect of old-age mortality data is a strong tendency 
toward age misreporting for very old persons, both in the ages of the living as 
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TABLE 1 
List of the Populations Studied 

The highest age for which 
Country Year data are available 

Australia 1970-72 99 
Austria 1960-62 97 
France 1962,68,74 99 
Federal Republic of Germany 1962,68,74 94 
German Democratic Republic 1976 98 
Germany 1910-11 100 
Hungary 1975 84 
Japan 1970 99 
Sweden 1973-77 99 
Thiwan 1931-35 95 

recorded in censuses, and in the ages of decedents in records of death.2 Only when 
age is determined from a long established register of persons, or when age can be 
confirmed from the date of birth listed on an identity card each individual carries, 
can reliable death rates by single years of age be obtained for very old ages. 

Taking this problem into consideration, we have selected our study populations. 
In order to obtain relatively accurate single-year data on age at death and age of 
persons, preference was given to populations that have long histories of vital reg­
istration, those with high levels of literacy and education, and those with cultural 
backgrounds that are in favor of accurate age identification. We also attempted to in­
clude a few populations with relatively high levels of mortality, and introduce some 
cultural and regional diversities among study populations. Data collection was not 
so easy as initially expected, because a number of countries tabulate mortality data 
by single year of age only up to a certain age that is not sufficiently old (e.g., 84) 
and pool mortality data for older ages together (e.g., 85 and over). 

Ten populations listed in Table 1 have finally been selected. Eight of the selected 
sets of data are for developed nations in the 1960s and 1970s, and the other two sets 
of data, for Taiwan, 1931-35, and for Germany, 1910-11, represent relatively high 
mortality.3 For France and West Germany, three different periods are included for 
an investigation of cohort effects on the observed age patterns. 

RESULTS 

Logarithms of death rates from age x to x + 1, In(M(x,l)), are plotted for ages 
55 and over for males and females of the study populations. M(x,l) is calculated 
by dividing the number of deaths between age x to x + 1 in a year by the mid­
year population between age x to x + 1. M(x,l) is accepted as an approximation of 
}L(x + 0.5).4 

2See for example, Horiuchi and Coale (1982) and Coale and Kisker (1986). 
3Data in the 1980s are not included here because data colIection for this research project was conducted 
in the late 1970s. 
41t can be shown that if mortality increases exponentialIy at a rate k over the interval from x to x +1 in 
a stationary population, then 

M(x,l) ~ p.(x +0.5)(1 + k2/24). 

If k = 0.1, M(x,l) ~ p.(x +0.5)(1.0004). 
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As illustrated in Figure 1, plotted points followed fairly straight lines. In most 
of the· study populations, R2 obtained from ordinary least squares regression of 
In(p,(x)) on age between 55 and 95 is over 0.99. 

The apparent linearity, however, does not necessarily suggest the lack of substan­
tial variations in k(x). Graduated values of k(x) are presented in Figure 2. In all of 
the female populations, k(x) does not remain constant, but changes systematically. 
It rises in younger old ages, reaches a peak, then declines in older old ages, resulting 
in a bell-shaped curve. 

A closer look at Figure 2 reveals that the bell-shaped curves in the eight low­
mortality female populations follow similar trajectories: the age at which k(x) starts 
to rise is around 55, the peak is about age 75, and the value of k(x) at its peak is 
close to 0.12. The curves are fairly symmetric around the peak. The similarity of 
those curves is clearly seen when the eight curves are plotted together in Figure 3. 

Bell-shaped curves in two female populations with relatively high mortality, Tai­
wan, 1931-35, and Germany, 1910, are somewhat different from the others. Their 
curves have lower peaks at earlier ages, and spread over wider age ranges than 
those in the other populations. 

Male populations do not uniformly reveal such bell-shaped patterns. Instead, fluc­
tuating patterns of k(x) are found for such countries as the Federal Republic of 
Germany, the German Democratic Republic, Austria and France, all of which were 
deeply involved in World War I. A closer look reveals that the timing of those fluctu­
ations coincide with cohorts, as illustrated later in Figure 4. It seems that those k (x) 
curves for males that might be similar to the female curves have been confounded 
with cohort mortality variations that reflect long-term impacts of World War I upon 
the health of its survivors. Since we have analyzed male k(x) patterns elsewhere 
in order to test this hypothesis (Horiuchi, 1983), detailed results for males are not 
presented here. 

DISCUSSION I: VALIDITY OF RESULTS 

Before discussing implications of our results, the validity of the findings needs to be 
carefully examined. The following three questions might be raised: 

1.	 Is the bell-shaped pattern attributable to cohort variations in mortality rather 
than age variations? 

2.	 Is the shape of the curve an artifact of the smoothing procedure? 
3.	 Is the pattern simply a reflection of some systematic errors in data? 

First, if the bell-shaped curve shifts over time with cohorts, the pattern should be 
interpreted as representing cohort differences in mortality. Figures 4 and 5 show 
patterns of k(x) in 1962, 1968 and 1974 for males and females, respectively, in 
France and the Federal Republic of Germany. The troughs and peaks of k(x) curves 
for males in Figure 4 move with cohorts. The birth cohort of 1897 in France and 
that of 1894 in the Federal Republic of Germany are always at troughs. For females, 
however, curves observed in different years are similar to each other and almost no 
cohort effects are noticeable in Figure 5. Comparison of Figures 4 and 5 gives some 
support to the view that the female bell-shaped pattern reflects age variations rather 
than cohort variations of mortality. 
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Secondly, in order to test if the bell-shaped pattern is a statistical artifact of our 
method of graduation, we have estimated the k(x) function in two ways that are 
different from our original procedure and compared the results, The first method 
uses the lex) function in the abridged life table, An average rate of mortality change 
from age x - 5 to x +5 is calculated from lex - 5), lex) and'l(x + 5) as 

"'021 In(l(x+5)/I(x))k( ) (5)x - , n In(l(x)/l(x _ 5))" 
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The other method uses central death rates by five-year age-groups. Namely, k(x) 
is approximated by the proportional increase in the death rate from age group (x­
5,x) to the next one (x,x + 5): 

rv In(M(x,5)) -In(M(x - 5,5))
k(x ) - 5 . (6) 
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As illustrated for Swedish females in Figure 6, the .patterns of k (x) estimated 
using these simpler methods are nearly identical to our original results. In addition, 
if the bell-shaped pattern is an artifact of the smoothing method, such curves could 
be found for males as well as females. However, the bell-shaped pattern was not 
observed for the majority of the male study populations. 

Finally, consideration should be given to the possibility that a substantial amount 
of systematic age misreporting might distort observed k (x) curves. Data sets used 
in this study may not be completely accurate. Age-specific death rates for Taiwan, 
1931-35, and Germany, 1910--11, are more erratic than those in the other popu­
lations and show some symptoms of digit preference, suggesting that data quality 
for those populations may not be as good as the others. This applies to Australia, 
1970--72, though to a lesser extent. 

However, most of the study popUlations are nearly completely literate and well­
educated, and have relatively long histories of vital registrations. In addition, our 
data set includes Sweden, which is known as one of the providers of the best qual­
ity of demographic data for an extended period of time, and Japan, where people 
are highly concerned with accurate identification of ages of older persons because 
special celebrations of their long lives are held at ages 60 (kanreki-celebration), 70 
(koki), 77 (kiju) and 88 (beiju). Furthermore, it seems unlikely that all of those fe­
male populations with different cultures have the same pattern of age misreporting 
that result in the bell-shaped curve of k(x). 

Kannisto (1988) examined the quality of mortality data on centenarians in seven­
teen countries and selected data from thirteen countries as reliable. Although the 
ages focused in his study are older than those in this study, it does not seem un­
reasonable to expect good quality of data on old persons in populations that have 

aAll study populations in figure 2 except Germany 1910-11 and Thiwan 1931-35. 
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reliable records on centenarians. Kannisto's original 17-country data set includes six 
countries in our data set (Australia, Austria, Federal Republic of Germany, France, 
Japan and Sweden), all of which were assessed by him as reliable. Although the 
periods covered for the six countries are not identical between the two studies, they 
overlap with each other except for Austria (1960-62 in this study and 1967-83 in 
Kannisto's study.) 

In summary, the observed age patterns of k(x) for older women do not seem 
attributable to mortality variations of cohort origin, the method of graduation em­
ployed here, or inaccurately reported ages. The bell-shaped curves, therefore, are 
considered to reflect some underlying age structures of mortality. 

DISCUSSION II: INTERPRETATION OF RESULTS 

Several mathematical equations have been developed to represent age variations in 
mortality at middle and old ages. In particular, the following models by Gompertz, 
Makeham, Perks and Beard are well-known (Beard, 1963). 

Gompertz: p(x) = Beux, (7) 

Makeham: p(x) = A + Beux , (8) 

A + Beux . 
Perks: (9)p(x) = 1 + CeUX ' 

Beux 
Beard: (10)p(x) = 1 + Ceux' 
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where A, B, C and u are parameters taking positive values.5 

Gompertz attributed the exponential increase of death rate in Equation (7) to the 
physiological deterioration that proceeds with age. He indicated that chance and 
degeneration were the basic two causes of death. Deaths by chance seem to include 
deaths by accident, suicide and homicide. 

Since Gompertz did not include the chance factor in his equation, Makeham 
added an age-independent term for the risk of death by chance, i.e., A in Eq. (8), 
to the Gompertz model. 

In some populations, however, observed death rates tend to be higher at young 
ages and lower at extremely old ages than the death rates estimated by fitting the 
Gompertz or Makeham equation to data. To overcome this problem, Perks proposed 
a logistic equation (9). Beard derived another logistic function (10) by modeling the 
physiological process of aging. Usually, all of these four equations fit data remark­
ably well. 

However, these models imply very different k(x) functions, as shown below. 

Gompertz: k(x) = u, (11) 

Makeham: k(x) = u (12)
1 +De-ux ' 

where D = AlB, 

u u
Perks: k (x) = - (13)

1 + De-UX 1 + Ee-ux 

where D = AlB and E = 1/C, 

Beard: k(x) = u (14)
1 + Ce ux ' 

The constancy of k(x) is implied by the Gompertz model. Both the Makeham model 
and the Beard model imply that k(x) follows logistic curves. A significant differ­
ence between the two logistic functions is that the Makeham logistic curve (12) 
rises monotonically from zero to u, whereas the Beard logistic curve (14) declines 
monotonically from u to zero. 

According to the Perks model (13), k(x) is the vertical difference of two parallel 
logistic curves. Both of the curves rise from zero to u, and their distance along 
the X -axis is always In(B IA C)I u. It should be noted that the vertical difference 
of two parallel logistic curves is a bell-shaped function that appears similar to the 
normal distribution.6 In the case of Eq. (13), the function reaches its peak ul(l + 

5The original Perks equation includes another exponential term in the denominator. Beard (1963), in 
discussing old-age mortality, excluded the term from the Perks equation, because the term was for ap­
proximating child mortality. In the present paper, we follow Beard's presentation of the Perks equation 
6The Perks model implies at least three bell-shaped functional relationships. Since this may cause some 
confusions, those relationships should be carefully distinguished. They are: a) d/-l(x)/dx is a quadratic 
function of /-lex); b) d/-l(x)/dx is a bell-shaped function of x that appears.similar to the normal distribu­
tion curve; c) dln(/-l(x))/dx (i.e., k(x)) is also a bell-shaped function of x with tails approaching zero at 
both ends. All of these functions have absolute maximums and are symmetric around their peaks. 

The first function is given by 

d/-l(x) U 
-- = --(/-l(x)-A)(F-/-l(x)), where F = B/C.

dx F-A 
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TABLE 2 
Results of Non-Linear Least Squares Regression Analysis for Swedish Females Aged 55-95, 1973-77 

Gompertz Makeham Perks Beard 
Parameters Model Model Model Model 

A N.A. .00(173 .00239 N.A. 
B .00399 .00355 .00230 .00392 
C N.A. N.A. .00367 .00108 
u .11180 .11545 .13876 .11367 

R2 of InJL(x) .9980 .9983 .9998 .9981 
R2 of k(x)Q .0000 .2458 .9609 .1257 

Q The regression analysis was conducted to maximize R 2 of In(JL(x)), but not R2 of k(x). 

VAC/B) - u/(l + VB/ AC) at x = In(VA/BC)/u, and the function is symmetric 
around the peak. (See Appendix A for more details.) 

Therefore, among the four models, only the Perks model is consistent with the 
bell-shaped k(x) patterns found for older women in the study populations.? This is 
illustrated for Swedish females in Table 2 and Figure 7. Table 2 presents parame­
ter values of the four models that are estimated by fitting them to death rates for 
Swedish females. A non-linear least squares procedure (Sadler, 1975) was employed 
for regression of In(ll,(x)) for ages between 55 to 95. All of the models fit the data 
extremely well. As shown in the second row from the bottom of Table 2, R2 for 
each model is above 0.998. Note that in those regression analyses, x is given as age 
measured with 55 as origin, i.e., the difference between the reported age and 55. 

We have estimated the k(x) sequence for the four models by substituting the 
estimated parameter values in Table 2 into the equations (11) to (14). Figure 7 
compares those estimated k(x) sequences with the observed one. The sequence of 
k(x)'s derived by fitting the Perks model (9) to the logarithms of age-specific death 
rates agrees fairly well with the smoothed sequence of observed k (x) values, except 
for some departures at both ends. However, k(x) values derived from the other 
models deviate substantially from observed values, in spite of the fact that those 
models fit the logarithms of observed death .rates remarkably well.8 

The compatibility of Eq. (13) with empirical data, however, does not necessarily 
imply that the proportional increase in the age-specific risk of death of individu­
als is well-approximated by the equation. It has been repeatedly pointed out that 
the age pattern of death rates for a population and the age pattern of mortality 

This function is a parabolic curve centering at the peak u(F - A)/4 at JL(x) = (A +F)/2. The second 
function is represented as 

dJL(x) _ uC(F - A)e UX 

~- (I+Ce ux)2' 

which reaches the maximum u(F-A)/4 at x = -inC/u. The third function is Eq. (13) in the text. It
 
should be noted that if JL(x) is a logistic function, a) and b) always hold but c) does not hold for some
 
kinds of logistic function.
 
7Our results seem to indicate the usefulness of a general strategy in data analysis: if two or more compet­

ing models appear to fit data well, the analyst may take the derivatives of the models, conduct numerical
 
differentiation of the data, and test if the agreement between the models and data still holds.
 
8Because of the bell-shaped pattern of k(x), the functional form JL(x) =Bexp(xu(x)), where u(x) =
 
Ex 2 +Fx + G, might fit the data well. However, unlike the Perks model, no theoretical justification
 
could be found so far for this functional form.
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FIGURE 7. The sequence of k(x) values estimated on the basis of different models: Swedish females, 
1973-1977. 

risk for individual members of the population could be substantially different be­
cause weaker subgroups tend to be reduced faster (Beard, 1963; Redington, 1969; 
Nam, Weatherby and Ockay, 1978; Shepherd and Zeckhauser, 1980 and 1982; Man­
ton, Pass and Wing, 1979; Vaupel, Manton and Stallard, 1979; Keyfitz and littman, 
1980; Bourbeau and Legare, 1981; Manton and Stallard, 1981; Manton, Stallard and 
Vaupel, 1981). 

The relationship between k(x) for individuals and that for population are repre­
sented as follows. Suppose that z is a measure of frailty, fLz(x) and kz(x) are the 
instantaneous death rate at exact age x and the rate of its change, respectively, for 
those with frailty z. (For a detailed definition of frailty, see Vaupel, Manton and 
Stallard, 1979.) It can be shown that 

100 

fLT(X) - kT(x) = dz(X){fLz(X) - kz(x)} dz, (15) 

where dz(x) is the proportion of all deaths at age x that occur to those with frailty 
z, i.e., It dz(x)dz = 1, and the subscript T refers to the entire population at a 
given age. Eq. (15) seems to suggest that the k(x) pattern for individuals and that 
for populations could be significantly different. 

It has previously been shown that, given the gamma-distribution of individual 
frailty, the age-specific death rate for a population is represented by the Beard lo­
gistic equation (10) if individuals follow the Gompertz equation (7), and by the 
Perks logistic equation (9) if individuals follow the Makeham function (8) (Beard, 
1963). The proof is recapitulated in Appendix B. Therefore, the observed k(x) pat­
terns are consistent with the following model: the force of mortality at age x for an 
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individual with frailty z is given by 

pz(x) = A + zeu". (16) 

where z is a gamma-distributed variable, replacing the constant B in Eq. (8). 
The equation (16) has two components: a constant A, and an age-dependent term 

zeu". The second term implies an exponential relationship, which has been derived 
from several mathematical models of aging and mortality (Strehler and Mildvan, 
1960; Brillinger, 1961; Beard, 1963; Brown and Forbes, 1974; Abernethy, 1979). 
However, some types of mortality risk are relatively independent of the physical 
deterioration that proceeds with age. Although these kinds of risk may also vary 
with age, their age variations are considered to be significantly smaller than age 
variations in mortality risk related to degenerative aging, so that the risk may be 
approximated by the constant A in Eq. (16). 

The Makeham chance factor A in Eq. (16) is necessary for the k(x) curve to be 
bell-shaped. Not all monotonically increasing logistic p(x) functions result in bell­
shaped k(x) patterns. If the factor A is excluded from the individual-level equation 
(16), then the resulting aggregate-level p(x) function is Eq. (10), a logistic curve 
rising from zero to B/C, which does not lead to a bell-shaped k(x) pattern. 

The assumption of gamma-distributed individual frailty, which has been adopted 
in some mortality studies (Beard, 1963; Vaupel, Manton, and Stallard, 1979), does 
not seem unreasonable. As stated by Vaupel et al. (1979), the gamma-distribution 
has several advantages in modelling frailty. It is a very flexible function, taking on a 
variety of shapes; if the individual risk is expressed as the sum of two age-dependent 
terms, one being unrelated to frailty and the other being the product of z and an 
age-dependent function, and if the frailty is gamma-distributed at birth of a cohort, 
then the frailty is expected to be gamma-distributed within the cohort at any age, as 
shown in Appendix C; the gamma-distribution has been widely used for modelling 
individual differences. 

Eq. (16) provides an intuitive interpretation of the bell shape as well as a math­
ematical derivation of the Perks model. The equation suggests two opposite effects 
on k(x). On the one hand, the proportion of mortality risk that is chance-related 
becomes negligibly small for older persons. Therefore, k (x) for an individual in­
creases with age and approaches u, the rate of increase of the degeneration-related 
risk. On the other hand, the selective survival in a heterogeneous population makes 
the population composition less frail at older ages, thereby slowing down the mor­
tality increase with age. The observed bell-shaped patterns seem to suggest 
that the first effect prevails at younger old ages and the second effect at older old 
ages. 

The explanation of the observed k(x) patterns in terms of Eq. (16), however, is 
not within limitations. First, although our data are period death rates in populations 
with changing mortality, the Perks model is derived from Eq. (16) for cohort death 
rates, or equivalently, period death rates in populations ,With constant mortality. 
Taking into consideration mortality changes over time and age variations in chance­
related risk, Eq. (16) may be rewritten as 

pz(x,t) = A(x,t) + y(t)zeuX, (17) 
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where t denotes time and yet) is considered to reflect changes in such mortality de­
terminants as medical technology, public health programmes, the standard of living 
and environmental contamination. 

Although the Perks equation cannot be derived from Eq. (17), the observed k(x) 
patterns are ben-shaped probably because age variations in mortality due to phys­
iological degeneration are considerably greater than period variations. However, if 
there were extremely large period variations in the past, such as those due to the 
world wars, then the k(x) pattern may not appear ben-shaped, as seen in some of 
the male populations. 

Secondly, the difference between the two populations with relatively high mortal­
ity (Germany, 1910-11, and Taiwan, 1931-35) and the other eight populations may 
suggest that the ben shape tends to be narrower with a higher peak at an older age 
in populations with lower mortality. Eq. (16), however, does not provide a frame­
work for analyzing temporal changes of the k(x) pattern. 

Thirdly, it may not be valid to assume that the value of the frailty parameter z 
of an individual remains constant throughout his life. The individual may become 
"debilitated" from severe diseases and injuries, malnutrition, unhealthy life styles 
and extended exposure to contaminated environments (Vaupel, Yashin and Manton, 
1988). Such debilitation effects, however, are not taken into consideration in Eq. 
(16). 

Finany, at least one alternative interpretation of the bell-shaped k(x) patterns still 
remains possible. The above discussion is based on the speculation that there are 
large individual differences with respect to the susceptibility to death. However, if 
the individual differences are small, the ben-shaped pattern of k(x) peaking around 
age 75 may simply be a reflection of "pace of aging" of individuals, suggesting that 
the pace of physiological aging is accelerating in younger old ages, say 55 to 75, and 
decelerating in older old ages, i.e., over 75.9 This hypothesis should be investigated 
in the future from more physiological and geriatrical viewpoints. 

In spite of these limitations, the combination of the Makeham equation for indi­
viduals and the gamma distributed frailty seems to provide a plausible explanation 
of the ben-shaped pattern, capturing major sources of variation in k(x), though 
probably oversimplifying minor ones. In this study, we have found an interesting 
female k(x) pattern, proposed an explanation for the pattern, and shown the useful­
ness of the measure in mortality research. Its usefulness should be explored further, 
probably with cause-specific mortality data as wen as long-time series of age-specific 
death rates. 
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APPENDIX A: CHARACTERISTICS OF THE PERKS k (x) 
FUNCTION 

In the Perks model, the instantaneous mortality rate at exact age x is given by 

A + BeUX 

J.L(x) = 1 + CeUX ' (A.l) 

where A, B, C and u are positive parameters. This equation represents a logistic 
curve bounded by A and BIC, that is, J.L(x) approaches A as x decreases and J.L(x) 
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approaches B IC as x increases. Since adult mortality increases with age, we set 
B>Ae. 

The rate of mortality change with age is given by 

k(x) = dln(p(x)) = u u (A2)
dx 1 + De-Ux 1 + Ee-ux ' 

where D = AlB and E = lie. 

Let gl(X) = ul(l + De-UX ) and g2(X) = ul(l + Ee-UX ). The k(x) function is the 
difference of two logistic functions gl(X) and g2(X), both of which rise from zero 
to u, and have the same parameter u that determines the steepness of the logistic 
growth. The two logistic curves are parallel along the X -axis since 

gl(X) = ul(l + De-UX ) = ul(l + Ee-ux-lnE+lnD) 

= g2(X + G), (A3) 

where G = (lnE -lnD)lu. 

Therefore, their distance along the X -axis is constantly G. 
The k(x) function in (A2) has several important characteristics. First, it is pos­

itive for all x because B > AC implies E> D. Second, k(x) approaches zero as x 
approaches the positive or negative infinity. 

Thirdly, the function has the absolute maximum. By differentiating (A2) with 
respect to x, we get 

(AA) 

so that the derivative of k(x) is positive when x < In(JDE)lu, zero when x = 
In(vDE)lu and negative when x> In(JDE)lu. Substituting x = In(vDE)lu into 
(A2), we get the maximum value of k(x), that is, ul(1 + JD I E) - ul(1 + JEID). 

Finally, the function is symmetrical around the peak at x = In(vDE)lu since 

k (In(v'l5E) ) _ u u
 
u -y -l+euyJDIE-l+euyJEID
 

= { u - 1 + eu:..;E7D}-{u - 1 + eUYu..Jl5TE } 
u u 

= 
l+e-uYJDIE l+e-uyJEID 

= k (In(~) + y) . (A.S) 
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APPENDIX B: DERIVATION OF THE PERKS MODEL 

PROPOSITION. Suppose that the instantaneous death rate at exact age x for persons 
with frailty z is given by 

uxpz(x) = A + ze (B.1) 

and z at x = 0 is gamma-distributed: 

(B.2) 

where fez) is the p.d.f. of z, rea) is the gamma function of a, and a and b are pa­
rameters of the gamma distribution. Then the death rate at age x for the population 
is represented by 

A + Beux 
(B.3)p(x) = 1 + Ceux ' 

where B = (A + au)/(ub -1) and C = l/(ub -1). 

PROOF. The proportion of persons with frailty z who survive up to age x is 

The instantaneous death rate at age x for the population is represented as 

It' f(z)lz(x)pz(x)dz 
(B.5)

p(x) = 1000 f(z)lz(x)dz 

Substituting (B.1), (B.2) and (B.4) into (B.5), we have 

ux It' za-l exp{ -z(b + (e UX 
- l)/u)}z dz 

p( x ) = A + e ~oo~-----,------'------'---10 za-1 exp{-z(b+(eUX -1)/u)}dz 

A + eUX a 
= -:------,-----:-:---:­

b + (eUX -l)/u 

A + {(A + au)/(ub _l)}eUX 

- 1 + {l/(ub -l)}eUX 

A + Beux 
Q.E.D.

1 + Ceux ' 

APPENDIX C: GAMMA DISTRIBUTED FRAILTY AMONG 
SURVIVORS 

PROPOSITION: Suppose the instantaneous death rate at age x for a person with 
frailty z is composed of two age-dependent functions, A(x) and H(x) in the follow­
ing way: 

pz(x) = A(x) + zH(x). (C.1) 
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We assume that frailty z at x = 0 is gamma-distributed as given by (B.2). Then z is 
gamma-distributed at any age. 

PROOF. It is derived from (C.l) that 

lz(x) = exp{ -lxA(y)dy}exp{-z lX H(y)dY }. (C.2) 

The p.d.f. of z at age x is given by 

f(z)lz(x) 
(C.3)gx(z) = ft f(z)lz(x)dz' 

By substituting (C.l) and (B.2) into (C.3), we have 

_ za-lexp{-z(b+ foxH(t)dt)} 
gx(z)- 00 {( x )}.fo za-1exp -z b + fo H(t)dt dz 

Setting c = b + fox H(t)dt and y = cz yields: 

caza-le-cz 

f oo ya-1e-Y dy'o 

which represents the gamma distribution with parameters a and c. Q.E.D. 
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