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Increase of Maximum Life-Span
in Sweden, 1861–1999

J. R. Wilmoth,1* L. J. Deegan,1 H. Lundström,2 S. Horiuchi3

A fundamental question in aging research is whether humans and other species
possess an immutable life-span limit. We examined the maximum age at death
in Sweden, which rose from about 101 years during the 1860s to about 108
years during the 1990s. The pace of increase was 0.44 years per decade before
1969 but accelerated to 1.11 years per decade after that date. More than 70
percent of the rise in the maximum age at death from 1861 to 1999 is
attributable to reductions in death rates above age 70. The rest are due to
increased numbers of survivors to old age (both larger birth cohorts and
increased survivorship from infancy to age 70). The more rapid rise in the
maximum age since 1969 is due to the faster pace of old-age mortality decline
during recent decades.

The world record of human life-span seems
to be moving upward over time, as suggested
by the death in 1997 of Jeanne Calment at the
documented age of 122.45 years (1). Howev-
er, such events are a poor measure of the
trend in achieved human life-span, which can
be studied more effectively using data for
well-defined populations. National demo-
graphic statistics suggest that the maximum
age at death has been rising steadily in indus-
trialized countries for more than 100 years
(2).

Two important questions arise from this
observation. First, has this upward trend been
steady over time, or has it changed pace in
recent years? Perhaps the increase has accel-
erated due to an intensification of efforts to
promote the health of the elderly and to pre-
vent or even cure ailments such as coronary
heart disease, stroke, and cancer. Or perhaps
the trend has decelerated because maximum
ages now observed for humans are approach-
ing a (hypothetical) biological limit. Second,
what accounts for the increase in the maxi-
mum age at death? There are two competing
explanations. One is that it is due merely to
the larger size of contemporary populations,
which increases the probability that at least

one individual will survive to an extreme old
age. Another possibility is that the increase
reflects improvements in an individual’s
probability of survival, especially at older
ages.

We have investigated these questions us-
ing Swedish national demographic data from
1861 to 1999, which are the longest available
series of reliable information on the upper
limits of achieved human life-span. Recorded
maximum ages at death for men and women
in Sweden centered around 101 years during
the 1860s and around 108 years during the
1990s (Fig. 1). A statistical analysis indicates
that the increase in the maximum age at death
accelerated markedly around 1969, rising at a
rate of 0.44 years per decade from 1861 to
1969 and 1.11 years per decade from 1969 to
1999. In both time periods, the maximum age
at death was on average about 1.7 years lower
for men than for women, although time
trends for both sexes are similar (3).

Apparent trends in the maximum age at
death can be distorted by changes in data
quality. Inaccurately reported ages of very
old persons and decedents have been com-
mon in official statistics for many countries
(2, 4). An improvement in data quality (i.e.,
fewer exaggerated reports of extreme old
age) may lead to a decrease over time in the
maximum reported age at death. Thus, a typ-
ical pattern is that the maximum age may
decline for several years as data quality im-
proves and then begin to increase. Only the
latter increase, not the earlier decrease, re-
flects a true trend. Mortality data since 1861

in Sweden show none of the typical signs of
age misreporting that are common elsewhere
(2). Mortality histories for the countries of
Western Europe and North America are
largely similar to the Swedish experience, but
no other country’s data offer the possibility
for reliable trend analysis in extreme old age
over such a long period. For this reason, only
Swedish data are used here, although the
results should apply broadly to the popula-
tions of other highly industrialized countries.

We analyzed the effect of changes in de-
mographic factors (birth counts and age-spe-
cific mortality rates) on the trend of the max-
imum age at death with the use of a model
that treats the observed maximum age as a
random variable with a theoretical probability
distribution. This distribution is determined
both by the underlying distribution of ages at
death for individuals and by the initial size of
a birth cohort (5). For this analysis, data on
the maximum age at death were reorganized
by year of birth (cohort) rather than by year
of death (period) (Fig. 2). These two trends
are similar and contain many of the same data
points. However, some points appear in one
series but not the other, because a death that
qualifies as the oldest for a birth cohort may
or may not be the oldest in the year of death,
and vice versa.

Our analysis of the cohort trend in the
maximum age at death relies on a reconstruc-
tion of Swedish mortality by year of birth
back to 1751. The life tables and the meth-
odology used to produce them are available
on our Web site (6). Although there may be
some question about the quality of period life
tables from late 18th-century Sweden (espe-
cially at older ages), life tables for cohorts
born in this era are more reliable because the
quality of the statistical system improved
over their lifetime. By the time such cohorts
attained age 100 or 110, where problems of
data quality are most severe, the Swedish
statistical system was extremely accurate (7).

In order to determine probability distribu-
tions of the maximum age at death, a se-
quence of age-specific death rates for each
cohort is needed. Death rates below age 80
were computed directly from national mor-
tality statistics, reorganized in a cohort for-
mat (8). Death rates above age 80 were esti-
mated by fitting a logistic function to ob-
served death rates and then extrapolating this
function to very high ages (9). It was neces-
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sary to assume that the age trajectory of the
death rate at very old ages for each cohort
follows a mathematical model for two rea-
sons (i) because observed death rates at very
old ages are highly erratic due to the small
number of deaths and (ii) because death rates
at ages above the observed oldest age at death
cannot be calculated directly (10). Various
mathematical models of mortality patterns
have been used in previous studies; among
them, logistic functions have been shown to
fit observed age trajectories of mortality at
the oldest ages extremely well (11).

Using birth counts, observed death rates
below age 80, and estimated death rates above
age 80, we calculated the probability distribu-
tion of the maximum age at death for each
cohort (12). The pth percentiles of these distri-
butions were then computed, with p equal to 10,
25, 50, 75, and 90 (13). We compared these
percentiles to the actual maximum age at death
for Swedish cohorts born from 1756 to 1884.
Our statistical model yields predictions of the
maximum age at death that track both the grad-
ual increase over time and the shift of trend for
cohorts born during the 1860s (corresponding
to the shift in the period trend around 1969)
(Fig. 3).

For this analysis, the trend in the 50th
percentile, or median, of these distributions
was taken to represent the underlying trend of

the maximum age at death. Each median is a
function of 121 factors: a birth count and
age-specific cohort death rates from age 0 to
119. For each pair of adjacent cohorts, the
change in the median from the older to the
younger cohort was split into effects attribut-
able to changes in these 121 factors (14).
Then, the total effect of each factor (on the
change in the median of the estimated distri-
bution of the maximum age at death) was
found by summing across all cohort pairs;
effects due to changing death rates were ag-
gregated by age group (Fig. 4).

These calculations demonstrate conclu-
sively that the rise of the maximum age at
death in Sweden from the 1860s to the 1990s
(represented here by cohorts born from 1756
to 1884) was due primarily to reductions in
death rates at older ages. Of the total increase,
72.5% is attributable to a decline in mortality
above age 70, only about 12% to the increas-
ing size of successive birth cohorts, and about
16% to mortality reductions below age 70.
These results were almost identical when the
analysis was done separately for men and
women, so we only report findings for the
total population.

The accelerated rise of the maximum age
at death after 1969 is also tied to trends in
death rates at older ages. It is known that the
historic decline of old-age mortality (in Swe-

den and other highly industrialized countries)
accelerated during the 1970s and 1980s (15).
All other factors held constant, this change of
trend should have pushed up the maximum
age at death faster than before. This expecta-
tion is confirmed by our finding that, for
cohorts reaching extinction after 1969, about
95% of the rise in the maximum age at death
is attributable to the decline in death rates
above age 70, compared to just over 60% for
earlier cohorts (16).

It was known already that a reduction in
old-age mortality has been the primary factor
behind population aging and the “prolifera-
tion” of centenarians during recent decades in
wealthy countries (17, 18). Here, we have
shown that mortality decline above age 70
has also been the main cause of a gradual
increase in maximum achieved human life-
span over more than a century. Only a minor
part of this increase is due to the larger size of
more recent cohorts (whether size is defined
in terms of the number of children born each
year or the number of persons who survive to
old age) (19).

Our analysis refutes the common assertion
that the human life-span is fixed and unchang-
ing over time (20, 21). Although the maximum
has increased much more slowly than the aver-
age, the entire distribution of ages at death has
been shifting upward for more than a century in

Fig. 1 (left). Annual
maximum ages at
death by sex, Sweden,
1861 to 1999, with
trend lines. Trend lines
follow a least-squares
regression equation
(3). Fig. 2 (right).
Annual maximum ages
at death (sexes com-
bined) in Sweden by
year of death (1861 to
1999) and year of birth
(1751 to 1889). The
lag between the two
series is 105 years
(32).

Fig. 3 (left). Annual
maximum ages at
death (sexes com-
bined) of Swedish co-
horts born 1756 to
1884 with percentiles
of estimated probabil-
ity distribution. Dotted
lines correspond to the
10th, 25th, 50th, 75th,
and 90th percentiles of
the estimated distribu-
tion of the maximum
age at death for each
birth cohort (13).
Fig. 4 (right). Percent
contribution of chang-
es in birth counts and
age-specific death rates to the rise in the maximum age at death of Swedish cohorts born 1756 to 1884.
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Sweden and, presumably, in other countries as
well. Reductions in death rates at older ages,
which have accelerated in recent decades, seem
likely to continue (22, 23) and may gradually
extend the limits of achieved human longevity
even further.
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