
Demography, Volume 45-Number 4, November 2008: 785–801 785

D

A DECOMPOSITION METHOD BASED ON A MODEL OF 
CONTINUOUS CHANGE*

SHIRO HORIUCHI, JOHN R. WILMOTH, AND SCOTT D. PLETCHER

A demographic measure is often expressed as a deterministic or stochastic function of multiple 
variables (covariates), and a general problem (the decomposition problem) is to assess contributions 
of individual covariates to a difference in the demographic measure (dependent variable) between 
two populations. We propose a method of decomposition analysis based on an assumption that co-
variates change continuously along an actual or hypothetical dimension. This assumption leads to 
a general model that logically justifi es the additivity of covariate effects and the elimination of inter-
action terms, even if the dependent variable itself is a nonadditive function. A comparison with earlier 
methods illustrates other practical advantages of the method: in addition to an absence of residuals 
or interaction terms, the method can easily handle a large number of covariates and does not require 
a logically meaningful ordering of covariates. Two empirical examples show that the method can be 
applied fl exibly to a wide variety of decomposition problems. This study also suggests that when data 
are available at multiple time points over a long interval, it is more accurate to compute an aggre-
gated decomposition based on multiple subintervals than to compute a single decomposition for the 
entire study period.

emographers often wish to compare two populations—either two populations at the 
same moment or the same population at two points in time—in terms of some variable 
of interest. Measures of most demographic processes (e.g., fertility, mortality, migration, 
marriage) have changed signifi cantly over time and show considerable variation across 
populations or groups (e.g., race/ethnicity, nationality, sex, and region of residence). 
Such a measure can often be expressed as a function of several covariates (with or with-
out an error term) and is thus regarded as the dependent variable. A general problem 
(the decomposition problem) is to assess contributions of changes or differences in the 
covariates between the two populations to the corresponding change or difference in the 
dependent variable. For example, women tend to live longer than men, and we may in-
quire about the relative contribution of differences in death rates by age and cause to the 
sex difference in life expectancy (Arriaga 1984; Pollard 1982, 1988). Likewise, the mean 
completed parity has increased or decreased in various contexts, and we may wish to ex-
press these temporal changes as functions of trends in parity progression ratios (Pullum, 
Tedrow, and Herting 1989). 

As Das Gupta (1991) noted, there are two fundamentally different types of 
 decomposition problems, depending on whether the populations involved are treated as 
homogeneous or heterogeneous with respect to the dependent variable of interest and its 
covariates. In the fi rst type of decomposition problem, the dependent variable is  described 
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as a function of covariates; only a single set of values for the dependent variable and its 
covariates is known for a population at any given moment, and thus the change in the 
dependent variable is decomposed into effects due to the change in each covariate for 
the population as a whole. In the second type, the dependent variable takes on different 
values for population subgroups; these subgroups are defi ned by the associated set of 
covariate values, and thus the change in the population mean of the dependent variable 
is  decomposed into effects due to changes in the dependent variable within the various 
subgroups and effects due to changes in the population distribution across the subgroups. 
The distinction between these two types will be presented more formally later in the article 
(Eqs. (13) – (15)).  Various decomposition methods of these two types are reviewed by 
Canudas Romo (2003).

This article focuses on the fi rst type, in which the difference in a dependent variable is 
expressed as a sum of the effects of differences in its covariates. (Hereafter, “decomposi-
tion” means the fi rst type only, unless specifi ed otherwise.) Decomposing the difference in 
the dependent variable is straightforward if it can be written as an additive function of its 
covariates. For example, the total fertility rate (TFR) is the sum of age-specifi c birth rates. 
Therefore, the contribution to a change in the TFR that is attributable to a change in the 
birth rate at some age is merely the change in the age-specifi c birth rate itself. Likewise, 
a difference in the dependent variable of any standard linear regression equation can be 
expressed as an additive function of differences in the covariates and the error term. How-
ever, many demographic measures cannot be expressed in a simple additive format. This 
problem has stimulated the development of various decomposition methods that deal with 
nonadditive relationships.

Previous approaches to decomposition problems have been based on some manner of 
discrete change in the value of each covariate from the fi rst population to the second. In 
this article, we propose a method of decomposition analysis relying on an assumption that 
values of the covariates change continuously, or gradually, along an actual or hypothetical 
dimension. This assumption seems like the natural choice for time-trend analyses because 
many variables change gradually over time. As we discuss later, this assumption provides 
a reasonable justifi cation for the additivity of covariate effects, which is a fundamental 
condition for decomposition analysis, and also for the elimination of interaction effects, 
which was an important issue in many previous decomposition studies.

The proposed method also requires an assumption about the relationship between 
covariates as they change gradually between two observation points. A convenient 
 assumption is that changes in the covariates are proportional to one another. In other 
words, equal proportions of the total change in each covariate are assumed to occur si-
multaneously. This assumption has a precise mathematical specifi cation, as described 
later in the article.

Although a number of previous methods were developed for specifi c dependent vari-
ables (e.g., life expectancy, mean completed parity, proportion of population in old age), 
this method can be applied to any type of dependent variable and its covariates, so long 
as the former is a differentiable function of the latter. Thus, the method is not limited to 
demography but applicable in any scientifi c fi elds that are concerned about the difference 
between two observations of a function of multiple variables. The relationship between 
the dependent variable and its covariates can be deterministic or stochastic. 

This method was devised as a generalization of two methods that had been indepen-
dently developed for some specifi c dependent variables (Pletcher, Khazaeli, and Curtsinger 
2000; Wilmoth and Horiuchi 1999). We and our collaborators used this method in a few 
recent studies (Glei and Horiuchi 2007; Wilmoth et al. 2000), but their reports described 
the method very briefl y and cited an early, unpublished version of this article for meth-
odological details. In what follows, we describe the method, present two examples of its 
application, and compare the method with previous methods.
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METHOD
Line Integral Model of Decomposition

Let us start by clarifying the meanings of some key terms. In this article, x is called a 
 covariate of y if y can be expressed as a mathematical function of x (and some other vari-
ables), regardless of whether x is associated with y through some causal pathway. An effect 
of x on y is a change or difference in y produced by a change or difference in x. (In some 
cases, we write “effect of the change (difference) in x” instead of “effect of x” to emphasize 
the variation in x.) A change or difference in y is decomposed by expressing it as the sum of 
effects of its covariates (and in some cases, we include additional terms such as interaction 
effects and residuals). 

In decomposition analysis, effects of the covariates are assumed to be additive, even 
though the dependent variable is not usually an additive function of the covariates. (If it 
is an additive function, decomposition is simple and no special method is needed.) In the 
previous literature, it has been unclear whether this apparent paradox (nonadditive function 
of covariates, yet additive covariates effects) is justifi able, or if the decomposition is simply 
a computational trick without a fi rm theoretical foundation. The method proposed here is 
based on a mathematical model that logically justifi es the additivity of covariate effects.

Suppose that a population is described by a numerical characteristic y, which is a dif-
ferentiable function f of n covariates denoted by x = [x1,x2, . . . ,xn]. Assume that both y and 
x depend on an underlying dimension t, which is typically time, and that observations of 
y and x are available at two points, t1 and t2. Assume also that x is a differentiable vector 
function of t between t1 and t2. Then, since

y(t) = f(x(t)) = f(x1(t), x2(t), . . . , xn(t)),  (1)

we have

y t y t d
dt
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by the fundamental theorem of calculus. By applying the chain rule for partial derivatives 
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Exchange of the integration and the summation, and application of the substitution rule of 
defi nite integrals lead to the following equation:
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Writing y(t1), y(t2), xi(t1), and xi(t2), as y1, y2, xi1, and xi2, respectively, and dropping the 
t in y(t) and xi(t), the difference in y between t1 and t2 can be expressed as follows:
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In this notation, ci is the total change in y produced by changes in the i-th covariate, xi. Thus 
ci can be considered the effect of xi on y.

The preceding discussion provides a general theoretical foundation for decomposition 
analysis because it implies that even if a dependent variable is not an additive function of 
its covariates, a change in the dependent variable can be expressed as a sum of effects of 
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the covariates. Geometrically, the vector x(t) is a point in an n-dimensional space, and the 
difference between y(t1) and y(t2) is an integral of the change in y along a curve on which 
the point moves from x(t1) to x(t2). The integral can be split into n additive components, as 
shown in Eq. (3). This type of integral is called line integral, which is widely used in me-
chanics (Williamson, Crowell, and Trotter 1968). In this sense, the mathematical framework 
represented by Eqs. (1)–(5) may be labeled the line integral model of decomposition.

It is important to note that regression analyses and decomposition analyses are based 
on different notions of the “effect” of a covariate on a dependent variable. The linear re-
gression coeffi cient for xi shows a change in y produced by a unit change in xi, ∂y / ∂xi. A 
decomposition analysis estimates a change in y produced by a particular change in xi from 

t1 to t2, which can be expressed as c y
x

dxi
i

ix
x

i

i= ∂
∂∫

1

2 .

Computation and Proportionality Assumption
The computational procedure of this method is essentially a combination of the delta 
method (i.e., the approximation of small fi nite changes by derivatives) and numerical 
inte gration.1 A change in the dependent variable can be considered an accumulation of 
many small changes. Each of these small fi nite changes in the dependent variable can be 
approximated by a linear combination of n partial derivatives of the dependent variable 
with respect to the covariates. Then the additive terms of the linear combinations can be 
aggregated for each of the n covariates over the path of entire change.

To compute these partial derivatives, we need some information about the trajectory of 
the curve in the n-dimensional space (i.e., the joint patterns of change in the xi’s between t1 
and t2). For a given i, the partial derivative within the integral of Eq. (4) depends not only 
on xi but also on xj for all j ≠ i. Therefore, in order to perform the desired calculations, we 
need some means of specifying the intermediate values of xj 

between xj(t1) and xj(t2) that are 
associated with a given level of xi. This necessity leads us to consider possible assumptions 
about connections among changes in the various covariates.

Probably the simplest assumption is that xi(t) changes linearly as a function of t:
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for all i and any t between t1 and t2. With this assumption, it is possible to compute ∂y / ∂xi 
over the range of xi1 to xi2, and then to obtain values of ci by numerical integration. How-
ever, a more general assumption is that changes in xi(t) are merely proportional to changes 
in the other covariates. Formally, assume there exists a continuous function g(t) such that
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for all i and t ∈[t1,t2]. Note that g(t1) = 0, and g(t2) = 1. With this assumption, given some 
intermediate value of xi (i.e., xi between xi1 and xi2), corresponding values of xj, for j ≠ i, are 
known as well by Eq. (7). Thus, based on nothing more than an assumption of proportional 
changes in the covariates, it is possible to compute values of ci. Furthermore, the exact form 
of g(t) does not matter, so long as it changes from 0 to 1 in a continuous (but not neces-
sarily monotonic) fashion. This is true because in Eq. (4), y is differentiated with respect 
to xi, not with respect to t, and because, for any function g(t), the relationships among the 
xi’s are identical.

1. The Divisia decomposition (Divisia 1925), which is widely used in economics for analyzing changes in 
monetary aggregates, may be considered a simple case of this approach. 
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The proportionality assumption, presented as Eq. (7), is equivalent to assuming that the 
curve between x(t1) and x(t2) is a straight line. Lacking information about the true path be-
tween the two data points, this linear path is justifi ed by the principle of Occam’s razor.2

Eq. (7) can be easily adapted to specifi c decomposition problems. The assumption of 
proportionality can be applied to the covariates in their original scale or to some transfor-
mations thereof. For example, we may assume proportional changes in xi and log xj, rather 
than xi and xj. 

With the simple assumption of Eq. (7), the ci’s in Eq. (5) can be found by numerical 
integration (i.e., by dividing xi2 – xi1 into N intervals, evaluating ∂y / ∂xi at the midpoint of 
each interval, and summing as appropriate; see the Appendix for a more detailed descrip-

tion of this procedure). As N increases, the proportional error in ĉi
i

n

=
∑

1
, where ĉi  is an es-

timate of ci found by numerical integration, approaches zero. Thus, this sum should equal 
y2 – y1, which is a known quantity. The proportional error is computed as
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and we can select a value of N that makes ε practically zero.
Additional information on the trajectory, if available, will help to improve the accuracy 

of the assumed trajectory and, in turn, the accuracy of decomposition results. In some cases, 
we have observations at several intermediate points on the curve between the initial and end 
points. For example, if we want to decompose some demographic change between the 1950 
and 2000 censuses in a country with decennial censuses, we should decompose the change 
in each of the fi ve decades between 1950 and 2000 by assuming proportional changes dur-
ing the 10-year period and then aggregate the fi ve sets of decomposition results, instead 
of decomposing the change in the entire 50-year period directly by assuming proportional 
changes from 1950 to 2000. (This will be illustrated later with some empirical examples.)

Interactions
A few words are needed about interaction effects. If a dependent variable is not an additive 
function of its covariates, the effect of an individual covariate often depends on values of 
the other covariates. In regression analysis, this interdependency among the effects of dif-
ferent covariates is called interaction. Similarly, in some previous decomposition studies, 
if the sum of covariate effects (also called main effects) did not match y2 – y1 , the discrep-
ancy was called an interaction effect. However, such interaction effects are more diffi cult 
to interpret than simple main effects; furthermore, they represent an incomplete separation 
of the contributions of individual covariates to the overall change (or difference) in a de-
pendent variable. For these reasons, it has usually been considered desirable to reallocate 
the interaction effect among the main effects (Das Gupta 1993: chap. 1)

In previous studies, decomposition was based on a discrete change of each covariate 
from the fi rst population to the second, while holding constant the other covariates at cer-
tain levels. In order to avoid interaction effects, these constant values must be selected in 
such a way that the main effects add up exactly to y2 – y1. However, the method proposed 
here relies on an assumption of gradual changes in the covariates, which makes it impos-
sible for any interaction effect to enter the decomposition equation. From this viewpoint, in-
teraction effects in decomposition studies are merely the result of insuffi cient  information. 

2. We conducted sensitivity analyses with two sets of empirical data and found that the decomposition results 
were reasonably insensitive to deviations from the proportionality assumptions. Details of the sensitivity analyses 
are given online at http://www.demog.berkeley.edu/~jrw/Papers/decomp.suppl.pdf.



790 Demography, Volume 45-Number 4, November 2008

If we know all details of the (continuous) transition process between the two populations, 
the change from y1 to y2 can be described in the additive format of Eq. (5), which fully 
separates the effects of individual covariates without any interaction component.

Possible Variations of the Method
A distinction can be made between two kinds of decomposition problems to which the 
present method can be applied. In the fi rst case, the dependent variable and its covariates 
change gradually between two sets of observations, typically as a function of time, and 
thus the variable t refers to some real dimension of change. In the second case, however, 
the two sets of observations refer to populations that are qualitatively different (e.g., males 
and females), and thus t is merely a hypothetical underlying dimension. In applying this 
method to the latter case, we assume implicitly that y and x change gradually between two 
qualitatively different populations—as if they were changing over time—even though ac-
tual changes are discrete, not continuous.

Furthermore, decomposition analyses (here and in general) can be classifi ed according 
to the form of the underlying functional relationship. Although deterministic relationships 
are assumed in Eqs. (1)–(5) and (8), the proposed method can easily be extended to proba-
bilistic models. For example, if y y e= +ˆ , where ŷ  is some function of x and e is an ob-
served value of some random variable, then a change or difference in y can be decomposed 
into ci’s and the change or difference in e. In this case, the y’s in Eqs. (1)–(5) and (8) are 
replaced by the corresponding ŷ’s.

APPLICATIONS
This section presents two applications of the proposed method to show that it can be used 
in different ways for different purposes. In Example 1, we decompose changes over time 
in three summary measures of mortality (the median, mean, and standard deviation of ages 
at death in the life table) into effects attributable to changes in death rates at various ages. 
In most previous decompositions of life table quantities, the sole variable of interest was 
the mean age at death, or life expectancy at birth e0 (Arriaga 1984; Carlson 2006; Pollard 
1982, 1988; Ponnapalli 2005; Vaupel and Canudas Romo 2003). Example 1 shows that the 
proposed method can be applied not only to the mean but also to the median, the standard 
deviation, and other summary measures, such as the interquartile range. (However, it would 
not be appropriate to apply this method in a similar way to the modal age at death, which 
is not a differentiable function of age-specifi c death rates.)

In Example 2, the regional difference in self-reported health between Minnesota and 
Mississippi is decomposed into effects of some socioeconomic and behavioral character-
istics. The dimension t is time in Example 1 but a hypothetical dimension in Example 2. 
Example 1 deals with deterministic relationships between the dependent variable and its 
covariates, but Example 2 illustrates an application of the proposed method to a relationship 
that includes a stochastic error term.3 

Example 1: Mortality Trends in Postwar Japan
After World War II, the level of mortality in Japan declined at an unprecedented pace. The 
age distribution of deaths in the life table has shifted to older ages, raising the median and 
mean ages at death considerably. In addition, the mortality decline in Japan reduced the 
standard deviation of ages at death by lowering the proportion of deaths at young ages and 
concentrating deaths into old ages (Wilmoth and Horiuchi 1999).

3. Two other examples—a decomposition of changes in the intrinsic growth rate in Sweden into the effects 
due to changes in age-specifi c death rates and a decomposition of sex difference in the life expectancy of fruit 
fl ies into the effects of the logistic model parameters—are shown online at http://www.demog.berkeley.edu/~jrw/
Papers/decomp.suppl.pdf.
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However, the increases in the median and mean and the decrease in the standard de-
viation proceeded differently (Figure 1). Although changes in these measures generally 
slowed, the deceleration was most pronounced for the decline of the standard deviation, 
followed by the rise of the mean, but was modest for the rise of the median age.

We used the decomposition method in order to investigate reasons for these somewhat 
different trends among the median, mean, and standard deviation. Some methods were de-
veloped previously for decomposing changes or differences in life expectancy, but to our 
knowledge no comparable technique has been proposed for the median or standard devia-
tion. The present method can be used fl exibly to decompose various summary measures of 
the life table into effects of age-specifi c, or age- and cause-specifi c death rates.

We decomposed changes in these three measures into effects due to changes in death 
rates by single years of age (0, 1, 2, . . . , 102, 103, and 104+). The method was applied to 
each of the 54 pairs of successive years between 1950 and 2004. Changes in the logarithms 
of the 105 age-specifi c death rates between two successive years were assumed to be pro-
portional to each other.4 

4. Lee and Carter (1992) adopted the same assumption in their model of mortality change.

Figure 1. Median, Mean, and Standard Deviation of the Age Distribution of Life Table Deaths: 
Japanese Females, 1950–2004
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Thus, the decomposition of changes in life expectancy, for example, was based on the 
following equations. The effect of the death rate for the i-th age group on the change in life 
expectancy e0(t) from the period t1 to the next period t2 can be calculated as

c
e t
M t

dM ti
i

M t
M t

ii

i=
∂
∂∫ 0

1

2
( )
( )

( ),( )
( )  (9)

where Mi(t) is the death rate for the i-th age group at time t (i = 1, 2, . . . , n). The partial 
derivative in Eq. (9) can be obtained numerically from 
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where f indicates an algorithm that transforms the vector of death rates into the value of life 
expectancy at birth. The numerical integration relies on the following assumption:
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for any pair of age groups i and j and for any t between t1 and t2. The decomposition of 
changes in the median age and that of changes in the standard deviation were done in a 
similar manner.

The number of intervals (N) used for numerical integration was set at 20 for each 
pair of successive years. The proportional errors of the various decompositions (ε’s) were 
very small: the maximum ε for the 54 pairs of period life tables was 0.1% for the median, 
0.005% for the mean, and 0.001% for the standard deviation.

In Table 1, the decomposition results are aggregated for three 18-year time periods and 
four broad age categories: 0 (infants), 1–14 (children), 15–64 (adults), and 65 and older 
(the elderly). The 12 (3 × 4) effects for each measure in Table 1 are actually a summary of 
5,670 (54 × 105) computed effects. The major fi ndings of this analysis can be summarized 
as follows: (1) for each of the three measures, the effects of changing infant and child 
mortality diminished over time, resulting in decelerating rates of change in the summary 
measure; (2) nevertheless, the median and mean ages continued to rise noticeably, thanks 

Table 1. Decomposition of Changes in the Median, Mean, and Standard Deviation of the Age 
Distribution of Life Table Deaths: Japanese Females, 1950–2004

 Median Mean Standard Deviation  ______________________   ______________________  _______________________
 1950– 1968– 1986– 1950– 1968– 1986– 1950– 1968– 1986–
 1968 1986 2004 1968 1986 2004 1968 1986 2004

Change of the Measure 
(1) Beginning 69.76 78.09 83.82 60.90 74.29 80.98 25.91 16.55 13.91
(2) End 78.09 83.82 88.36 74.29 80.98 85.59 16.55 13.91 13.59
(3) Increase 8.33 5.74 4.54 13.39 6.69 4.61 –9.36 –2.64 –0.32

Eff ects of Age-Specifi c Mortality
(4) 0 0.67 0.10 0.03 2.77 0.64 0.18 –4.17 –1.55 –0.53
(5) 1–14 0.80 0.06 0.02 2.81 0.32 0.10 –3.48 –0.72 –0.28
(6) 15–64 4.18 1.09 0.28 6.17 2.18 0.70 –2.52 –1.61 –0.69
(7) 65+ 2.68 4.48 4.21 1.65 3.55 3.63 0.81 1.24 1.18

Note: Rows of the table have the following relationships: (3) = (2) – (1) = (4) + (5) + (6) + (7) (with rounding errors).
Source: Human Mortality Database (2007).
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to the growing signifi cance of mortality reduction at older ages; (3) in contrast, the trend in 
the standard deviation virtually leveled off, since the effect of old-age mortality reductions 
on the standard deviation was small or even positive (because mortality reduction at older 
ages stretches out the upper tail of the distribution of ages at death); and (4) the rise of 
the median age in earlier periods was less pronounced than the rise of the mean age, since 
reductions in infant and child mortality affected the median much less than the mean. In 
summary, the decomposition analysis shows that age-specifi c death rates affected trends in 
these three measures of mortality in noticeably different ways.

Example 2: Regional Differences in Health Status
Health conditions differ substantially by region. For instance, the proportion of residents 
whose health conditions are reported as “fair” or “poor” varies among U.S. states. The age-
adjusted proportion for adults above age 18 in 2003–2005 ranges from 10.9% in Minnesota 
and New Hampshire to 23.1% in Mississippi and West Virginia (National Center for Health 
Statistics 2007). What factors account for the difference between, for example, Minnesota 
and Mississippi?

In order to investigate regional differences in health status, we assume that the age-
adjusted proportion of population in the state whose health conditions are reportedly fair 
or poor, denoted by θ, can be expressed as

θ =
+

+

+

e
e

e

e

x

x

ββ

ββ1
, (12)

where x is a row vector of covariates including a constant of 1, ββ is a column vector of their 
coeffi cients, and ε is an independent random variable that is normally distributed with a 
mean of 0 and the same variance for each state.

State-level data on self-reported health as well as some socioeconomic and  lifestyle 
characteristics were downloaded from the Web sites of the U.S. Census Bureau (2007) 
and the National Center for Health Statistics (2007). The regression coeffi cients were 
 estimated from data for the 50 states and the District of Columbia around 2005 by 
minimizing the squared errors of the following model: logit(θ) = xββ + e. (Although this 
 estimation procedure appears similar to the usual form of logistic regression, it is funda-
mentally different because the dependent variable here is not binary but continuous be-
tween 0 and 1, and the coeffi cients are not estimated on the basis of maximum likelihood 
and binomial distributions.)

Nine covariates were included in the initial model of Eq. (12), but the correlation ma-
trix of those covariates included a number of notably high values. After stepwise removal of 
variables whose coeffi cients seemed to be strongly affected by the multicollinearity prob-
lem, four covariates remained in the fi nal model (R2 = .89): the proportion of persons aged 
25 years and older who completed high school (including equivalency), the proportion of 
persons aged 18–64 who are not covered by health insurance, the age-adjusted proportion 
of those aged 18 and older who are currently smoking, and the age-adjusted proportion of 
those aged 20 and older who are obese.

Results of the regression analysis are shown in the rightmost column of Table 2. In 
terms of the p value, the strongest among the four factors is the proportion of adults who 
completed high school. This probably refl ects substantial impacts of socioeconomic status 
on health through various pathways (other than health insurance coverage, smoking, and 
obesity) as well as contextual effects on the health of residence in well-to-do states. 

The decomposition analysis was applied to the difference in θ between Minnesota and 
Mississippi using the four-covariate model of Eq. (12). Splitting the difference into six 
intervals was suffi cient to make the proportional error as low as 0.001%. Table 2 shows 
that about 95% of the difference is “explained” by the four factors. More than half of the 
difference is attributed to the proportion who completed high school, partly because of the 
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large difference in the proportion between the two states (90.9% in Minnesota and 78.5% 
in Mississippi) and partly because of its relatively large regression coeffi cient. This analysis 
confi rms the well-known socioeconomic effects on health and indicates that the difference 
between Minnesota and Mississippi is no exception.

DISCUSSION: COMPARISON WITH OTHER METHODS
We now try to clarify characteristics of the proposed method through a comparison with 
previous ones. First, as mentioned earlier, there are two fundamentally different types of 
decomposition analysis. The distinction, originally made descriptively by Das Gupta (1991, 
1993), can be expressed more formally as follows. In the fi rst type, the variable of interest 
is a function of multiple variables, that is, 

y(t) = f(x1(t), . . . , xn(t)), (13)

and the decomposition analysis expresses a change of the dependent variable (y) as the sum 
of effects of its covariates (xi’s). In the second type, the variable of interest is the mean of 
a function y = f(x1, . . . , xn; t). The variables x1, . . . , xn have a joint frequency distribution 
in the population at t.

If the covariates are continuous variables, the mean of y can be expressed formally as

y t f x x t w x x t dxn n( ) ( , , ; ) ( , , ; )= ∫. . . . . . . . . .1 1 1   . .dxn∫ ,  (14)

where w(x1, .  .  . , xn; t) is the probability density function for the joint distribution of x1, . . . ,  
xn at t, such that . . . . . . . . .w x x t dx dxn n( , , ; )1 1 1∫∫ =  for any t (see also Vaupel and Canudas 
Romo 2002). If the covariates are discrete variables, the mean value for the entire popula-
tion is given by 

y t f t w tj j j j
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Table 2. Decomposition of Diff erence Between Minnesota and Mississippi in Self-Reported Health 
Status,a 2003–2005

 Decomposition Regression
 Resultsb Coeffi  cientsc

(1) Proportion of persons aged 18+ who are not healthy in Mississippi (in %) 23.1 –– 
(2) Proportion of persons aged 18+ who are not healthy in Minnesota (in %) 10.9 –– 
(3) Diff erence between Mississippi and Minnesota 12.2 –– 
(4) Eff ect of proportion of persons aged 25+ who completed high school 6.2 –3.7906**
(5) Eff ect of proportion persons aged 18–64 not covered by health insurance 3.5 1.6443**
(6) Eff ect of proportion of persons aged 18+ who are currently smoking 0.4 0.8486 
(7) Eff ect of proportion of persons aged 20+ who are obese 1.4 1.5688**
(8) Constant –– 0.6508 
(9) Residuald 0.7 ––  

Sources: National Center for Health Statistics (2007); U.S. Census Bureau (2007).
aTh e proportion of residents whose health conditions are reported as “fair” or “poor.”
bIn this column, rows have the following relationships: (3) = (1) – (2) = (4) + (5) + (6) + (7) + (9) (with rounding errors).
cEstimates of coeffi  cients in Eq. (12), based on data for 50 states and the District of Columbia.
dResidual term of the decomposition analysis results from error term of the regression model.
**Signifi cant at .01 level.
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where f tj jn1… ( ) is the value of y for the group characterized by n categorical attributes at 
t, and ki is the number of categories of the i-th attribute. Likewise, w tj jn1… ( ) is the propor-

tion of the population in the group at t, and thus . . . w tj j
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The goal of the second type of decomposition analysis is to separate the change (or dif-
ference) in y  into two distinct parts: a component due to changes in the functional relation-
ship, f, and another one due to changes in the joint distribution of xi’s or ji’s. (Usually the 
second component is divided further into n or more subcomponents.) Thus, the second type 
of decomposition is fundamentally different from the fi rst type (the case considered here) 
for at least two reasons. First, at a given moment t, each covariate takes a certain value in 
the fi rst type but has a frequency distribution in the second type.5 Second, in the fi rst type, 
the functional relationship, f, is both known and unchanging; however, in the second type, 
the mathematical form of the relationship is usually unknown, and the relationship between 
y and xi’s may vary with t. Methods of the second type of decomposition include those 
developed by Clogg (1978), Das Gupta (1994), Liao (1989), Vaupel and Canudas Romo 
(2002), and Xie (1989).

Since the proposed method belongs to the fi rst type, we should compare it only with 
others of the same type. As described earlier, the method is based on the assumption that 
the change in y is produced by gradual changes of its covariates, but in all previous meth-
ods, the effect of a covariate is calculated as the change in y produced by a discrete change 
of the covariate from t1 to t2, while holding constant the other covariates at certain values. 
Thus, different choices of constant values of the other covariates lead to different methods, 
which may be grouped as discrete-change methods as opposed to the continuous-change 
method proposed here. We will discuss four different discrete-change approaches (labeled 
here as Methods A, B, C, and D) adopted in previous decomposition studies. All of them are 
widely applicable methods, and methods that are limited to particular dependent variables 
are not considered here. 

In Method A (Kitagawa’s method), one of the two populations is chosen as the reference 
population. The effect of the i-th covariate, ci, is calculated as the change in y produced by 
the change in xi, while the other covariates are held at their values in the reference popula-
tion. This is one of two versions of Kitagawa’s method (1955).6 For a given data set, this 
method can have three versions: the population at t1 (Method A1) or that at t2 (Method A2) 
may be selected as the reference, or results of these two decompositions may be averaged 
(Method A3). Usually the ci’s do not add up to y2 – y1, and the discrepancy is considered an 
interaction effect. Keyfi tz (1968) used Method A1 for decomposing a change of the intrinsic 
growth rate into effects of changes in age-specifi c birth rates and death rates. 

However, interaction effects are not only diffi cult to interpret, they also make the 
exercise unsatisfying because the purpose of a decomposition is to separate the effects of 
individual covariates. Method B avoids an interaction effect by changing values of covari-
ates in a certain order. This idea is called stepwise replacement (Andreev, Shkolnikov, and 
Begun 2002). Effects of covariates are estimated in the order of x1, x2, . . . , xn, and unlike 
Method A, once the value of xi is shifted from xi(t1) to xi(t2), it remains as xi(t2) when effects 
of covariates that are later in the sequence are calculated. Thus, the effect on y of the fi rst 
covariate, c1, is computed by changing x1 from x1(t1) to x1(t2), keeping values of the others 

5. The original method by Kitagawa (1955), which decomposes a difference in the proportion of those who 
have a characteristic of interest, belongs to both of the types. It is a special case of the second type in which there 
is only one covariate that has a frequency distribution among n categories at t. Thus, Eq. (15) becomes a simple 

form, y t f t w tj jj

n
( ) ( ) ( )= ∑

=1
, where wj(t) is the proportion in the j-th group. This can also be viewed as Eq. (13) 

with 2n covariates, y t g f t f t w t w tn n( ) ( ), , ( ), ( ), , ( )= ( )1 1 . . .  . . .  that is, as a special case of the fi rst type. 
6. The other version, which does not include an interaction term, can be considered a special case of Method 

B3 and also Method C.
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at t1. Next, c2 is obtained by changing x2 from x2(t1) to x2(t2), keeping the fi rst covariate now 
at t2 (i.e., at x1(t2)), but the others (x3, . . . , xn) still at t1. Then c3 is calculated, keeping x1 
and x2 at t2 but x4, . . . , xn at t1. Proceeding in this manner, the effect of the last covariate, 
cn, is obtained by changing xn from xn(t1) to xn(t2), keeping values of all other covariates at 
t2. Thus, the value of the dependent variable is initially y1, changes in n steps, and fi nally 
reaches y2, assuring that ci’s add up exactly to y2 – y1 without any interaction term.

For a given data set, this method also has three versions: ascending order from x1 to xn 
(Method B1), descending order from xn to x1 (Method B2), and the average of B1 and B2 
results (Method B3). This method is applicable only if the covariates can be meaningfully 
ordered. For example, if the covariates are age-specifi c death rates, they may be ordered 
from young to old. Thus, Arriaga’s (1984) technique for decomposing changes in life ex-
pectancy into effects of age-specifi c death rates follows the ascending order of age (Method 
B1), and Pollard’s (1988) method takes the average of young-to-old and old-to-young 
decompositions (Method B3).

However, it is not always possible to arrange covariates in a meaningful order. If it 
is impossible to select one particular sequence of the covariates, Method C (Das Gupta’s 
method) seems more appropriate: the stepwise replacement is carried out for each of all 
mathematically possible sequences (permutations), and their average is taken as the fi nal 
decomposition result. Andreev et al. (2002) found that this algorithm is equivalent to the 
method developed by Das Gupta (1999).

Method D (the delta method) implicitly assumes continuous changes but uses a single 
discrete change for actual calculation. Although the partial derivative of y with respect to xi 
varies between t1 and t2, the varying partial derivative may be approximated by a constant 
partial derivative evaluated at a certain point (typically the midpoint) between t1 and t2. Then 
the effect of xi is estimated as the product of the particular value of ∂y / ∂xi and (xi(t2) – xi(t1)). 
Because this is an approximation, the effects do not add up to y2 – y1, and the discrepancy 
may be called a residual. This approach was adopted by Pullum et al. (1989) for decompos-
ing a change in the mean completed parity into effects of parity progression ratios.

In order to understand differences among these methods further, we applied them to 
the same data set and compared the decomposition results. The mortality data for Japanese 
women in Example 1 were used, and the e0 change between 1950 and 2004 was decom-
posed using each method in two different ways: by examining changes in each pair of 
successive calendar years and then aggregating 54 decompositions across the entire period 
(Table 3), and by examining the difference between 1950 and 2004 without using data for 
calendar years between them (Table 4). In each case, effects of 105 single-year age groups 
were calculated and then aggregated for four broad age categories as in Table 1.7

Table 3 shows that the aggregated results of 54 annual-change decompositions using 
Methods A3, B3, C, D, and the continuous-change method are nearly identical. The selec-
tion of reference population in Method A (A1 and A2) and the reversal of order of stepwise 
replacement in Method B (B1 versus B2) make some difference, but the averaging out of 
those differences (A3 and B3) makes the results of Methods A and B very close to those of 
the other methods. Table 4 seems to suggest that if those methods are used for decomposi-
tion of a small change, they tend to produce similar results.

Table 4 shows results of a single decomposition (of the difference between 1950 and 
2004) and compares them with the average of the fi ve nearly identical results in Table 3, 
which may be considered good proxies of “true” effects. Differences among the methods 

7. An exception was necessary in the case of Method C. To apply this method in the standard fashion would 
have required computing life tables while making sequential changes in all possible permutations of 105 single-year 
age groups. Clearly, the computational demands of such an exercise are overwhelming. As a practical alternative, 
changes were introduced for all ages simultaneously within one of the four broad age groups, and life tables were 
computed (as for the other methods) using single-year data. Thus, this adaptation of the method took into consid-
eration all possible orderings of changes for four broad age groups, rather than for 105 single-year age groups.



A Decomposition Method Based on a Model of Continuous Change 797

in Table 4 are larger than those in Table 3, suggesting that the choice of decomposition 
method may make nonnegligible differences if applied to relatively large changes in a 
long period. The estimated effects differ notably between A1 and A2, and also between 
B1 and B2, indicating that the decomposition result may be sensitive to the selection of 
the reference population for Method A and the order of stepwise replacement for Method 
B. In terms of the index of dissimilarity, the most accurate results were produced by the 
continuous-change method, but the results of Methods B1, B3, C, and D seem fairly close 
to the “true” result as well.8

However, the comparative study in Table 4 does not necessarily suggest that the 
 continuous-change method always produces most accurate results. For example, if actual 
changes follow the stepwise-replacement scenario more closely than the proportional-
change scenario, results of Method B should be more accurate than those of the  continuous-
change method, if the right sequence of covariates is chosen.

The discrete-change decomposition methods can be interpreted in terms of the line 
integral model. Method B can be considered as a special version of the continuous-change 
decomposition method, with the assumption that the point in n-dimensional space (as de-
fi ned by vector x) follows a stepwise trajectory with n – 1 orthogonal turns: fi rst, the point 
moves from its initial location along the x1 axis, then turns perpendicularly and moves 
along the x2 axis, and so on, until it reaches its fi nal location by moving along the xn axis. 

8. The index of dissimilarity was calculated using the broad age categories in Table 4.

Table 3. Comparison of Diff erent Methods: Sum of 54 Decompositions of Annual Changes in the 
Expectation of Life at Birth for Japanese Females, 1950–2004a

 Effects of Age-Specifi c Mortalityb 
Interaction __________________________________________

 0 1–14 15–64 65+ or Residual

Discrete-Change Methods     
Method A1c 3.57 3.20 8.93 8.35 0.65
Method A2d 3.60 3.25 9.17 9.34 –0.67
Method A3e 3.59 3.22 9.05 8.84 –0.01
Method B1f 3.57 3.21 9.03 8.88 0.00
Method B2g 3.60 3.24 9.07 8.78 0.00
Method B3h 3.59 3.22 9.05 8.83 0.00
Method C (Das Gupta) 3.59 3.22 9.05 8.83 0.00
Method D (� ) 3.58 3.22 9.04 8.83 0.01

Continuous-Change Method 3.59 3.22 9.05 8.83 0.00
Total Averagei 3.59 3.22 9.05 8.83 0.00

aTh e total change is 24.69 years, which is the sum of fi ve fi gures for each row.
bEff ects of 105 single-year age groups (0, . . . , 104+) were aggregated by the broad age categories.
cTh e reference period is the earlier year for each pair of successive years.
dTh e reference period is the later year for each pair of successive years.
eAverage of A1 and A2.
fFollows the ascending order of ages.
gFollowing the descending order of ages.
hAverage of B1 and B2.
iAverage of the results of A3, B3, C, D, and the continuous-change methods.
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Method C is the average of results for all possible stepwise paths. Methods A and D can 
be considered as attempts to evaluate the line integral by replacing the function that yields 
the dependent variable with an additive and a linear approximation, respectively. The er-
ror of approximation is regarded as the interaction effect or the residual. No assumption 
about the trajectory is needed for Methods A and D because if the function is additive or 
linear, n components of the line integral can be evaluated from information on the two 
end points only. 

SUMMARY AND CONCLUSIONS
In this article, we proposed a method for decomposing a change or difference in a function 
of multiple variables. The method relies on the assumption that covariates change gradually 
along an actual or hypothetical dimension and the dependent variable is a differentiable 
function of the covariates. It has a few major theoretical and practical advantages, as sum-
marized below.

The proposed method is based on a mathematical model (the line integral model of 
decomposition) that justifi es the additivity of covariate effects and the elimination of interac-
tion effects. In decomposition analysis, the effects are assumed to be additive, even though 
the dependent variable is usually a nonadditive function of its covariates. In the previous 
literature, it was not fully clear whether this apparent paradox was logically justifi able. The 
line integral model provides a theoretical foundation for decomposition analysis. 

Table 4. Comparison of Diff erent Methods: Single Decomposition of the Diff erence Between 1950 
and 2004 in the Expectation of Life at Birth for Japanese Femalesa

 Effects of Age-Specifi c Mortalityb 
Interaction Index of  __________________________________________

 0 1–14 15–64 65+ or Residual Dissimilarityc

Total Average From Table 4 3.59 3.22 9.05 8.83 0.00 0.000
Discrete-Change Methods      

Method A1d 3.18 2.88 7.07 3.23 8.33 0.337
Method A2e 4.25 4.09 13.30 17.85 –14.79 0.375
Method A3f 3.71 3.49 10.19 10.54 –3.23 0.116
Method B1g 3.18 3.10 8.85 9.56 0.00 0.030
Method B2h 4.25 3.81 10.54 6.09 0.00 0.111
Method B3i 3.71 3.45 9.70 7.83 0.00 0.041
Method C (Das Gupta) 3.68 3.44 9.78 7.78 0.00 0.043
Method D (� ) 2.75 2.27 8.93 8.71 2.02 0.082

Continuous-Change Method 3.56 3.29 9.56 8.27 0.00 0.024
aTh e total change is 24.69 years, which is the sum of fi rst fi ve fi gures for each row.
bEff ects of 105 single-year age groups (0, . . . , 104+) were aggregated by the broad age categories.
cComparison between each method and “Total average” in Table 3.
dTh e reference period is 1950.
eTh e reference period is 2004.
fAverage of A1 and A2.
gFollows the ascending order of ages.
hFollowing the descending order of ages.
iAverage of B1 and B2.
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The model also implies that interaction terms should be eliminated, not merely because 
they complicate decomposition results, but because in a model of continuous change, they 
do not exist. From this viewpoint, interaction effects in previous decomposition studies 
may be regarded as the result of incomplete information about patterns of change between 
observation points.

A few general methods for decomposing a change or difference in a multivariate 
function were developed previously, but they have some practical limitations. Method A 
(Kitagawa’s method) produces an interaction term, Method D (delta method) produces a 
residual term, and both of the terms are not easily interpretable. Method B (stepwise re-
placement) should not be used if covariates cannot be ordered in a meaningful sequence. 
Furthermore, a logically meaningful sequence is not necessarily justifi able as an appropriate 
order of stepwise replacement: for example, vital rates at younger ages do not necessarily 
tend to change earlier (or later) than those at older ages. Method C (Das Gupta’s method) 
is based on permutations of the covariates, which may require an astronomical amount of 
memory and computation if the number of covariates is large.9

The proposed method has none of these limitations. It does not have an interaction term 
or a nonnegligible residual term, nor does it require a meaningful ordering of covariates. It 
can easily handle data with many covariates because the amount of computation increases 
linearly with the number of covariates, not geometrically or in proportion to the number of 
their permutations (see the Appendix for more details of computation amount).

Its major difference from previous methods is the assumption that covariates change 
gradually along an actual or hypothetical dimension. This assumption fi ts some decom-
position problems very naturally. For example, this method seems highly appropriate 
for decomposing time trends if relevant variables can be reasonably assumed to change 
gradually over time. On the other hand, if some covariates actually change in noticeably 
discrete manners, the assumption is not compatible with reality. This could be a limitation 
of the proposed method in certain cases. However, although vital events (such as birth and 
death) are discrete changes at the individual level, many of the corresponding measures at 
the aggregate level (such as birth rates and death rates) can be reasonably approximated as 
continuous variables.

The method requires an additional assumption about the trajectory of changes between 
the two data points. Recommended as the “default” is the straight-line path—that is, the 
assumption that increments of the covariates are proportional to each other. The validity of 
this assumption should vary among research subjects and data.

In addition, our empirical results (Tables 3 and 4) suggest (as seems logically reason-
able) that it is better to aggregate decomposition results for relatively short time intervals 
than to carry out one decomposition for the entire period if data for some intermediate time 
points in the decomposition period are available.

APPENDIX: COMPUTATIONAL PROCEDURE
The right side of Eq. (5) can be approximated by numerical integration. For each covariate 
xi, the range between xi1 and xi2 is divided into N intervals of equal length:

∆xi = (xi2 – xi1) / N. (A1)

In order to change the value of xi in the k-th interval while keeping the others constant, we 
defi ne two vectors,

9. Our MATLAB 6.1 program of Method C on a PC with 1.8 GHz, 256 MB RDRAM, and 384 MB of virtual 
memory worked with nine or fewer covariates, but not with 10 or more covariates because of insuffi cient memory. 
Although more sophisticated programming and enlarged virtual memory will increase the possible number of 
covariates, it may be diffi cult to use Method C even for a problem of modest size (e.g., decomposing a difference 
in an overall demographic measure into effects of about 20 vital rates for fi ve-year age groups).
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x ik j j ik j ikx x x j i x x j i+ + •= = = = ≠[ | ; ]if if

and
x ik j j ik j ikx x x j i x x j i− − •= = = = ≠[ | ; ]if if , (A2)

where x x kik i+ = +1 ∆xi , x x kik i• = + −1 0 5( . )∆xi , and x x kik i− = + −1 1( )∆xi . xik+, xik• , and 
xik– are values of xi at the end, midpoint, and beginning, respectively, of the k-th interval. 
Note that a change from xik– to xik+ means that xi moves from the beginning to the end of the 
k-th interval, but the other covariates remain at the midpoint of the interval.

 If N is large, we have
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This method is computationally intensive. For Example 1, with N = 20, a complete life 
table had to be constructed 113,455 times ((20 intervals × 105 variables × 54 period-pairs) 
+ 55 periods). Nevertheless, it took only about 8 minutes of CPU time for the MATLAB 
6.1 program on a PC with 1.8 GHz, 256 MB RDRAM, and 384 MB of virtual memory to 
carry out the entire calculation. The MATLAB function of the proposed method is available 
from the fi rst author upon request. 
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